| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > mdsl2i | Structured version Visualization version GIF version | ||
| Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mdsl.1 | ⊢ 𝐴 ∈ Cℋ |
| mdsl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| mdsl2i | ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdsl.1 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ Cℋ | |
| 2 | chub1 31443 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) |
| 4 | iba 527 | . . . . . . . . . . . 12 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵))) | |
| 5 | ssin 4205 | . . . . . . . . . . . 12 ⊢ ((𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) | |
| 6 | 4, 5 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 7 | 3, 6 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 8 | chub2 31444 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) | |
| 9 | 1, 8 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) |
| 10 | 9 | ssrind 4210 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
| 11 | 7, 10 | jctird 526 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 12 | chjcl 31293 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) | |
| 13 | 1, 12 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) |
| 14 | mdsl.2 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ Cℋ | |
| 15 | chincl 31435 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∨ℋ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) | |
| 16 | 14, 15 | mpan2 691 | . . . . . . . . . . 11 ⊢ ((𝑥 ∨ℋ 𝐴) ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
| 17 | 13, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
| 18 | 1, 14 | chincli 31396 | . . . . . . . . . . 11 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| 19 | chlub 31445 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
| 20 | 18, 19 | mp3an2 1451 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 21 | 17, 20 | mpdan 687 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 22 | 11, 21 | sylibd 239 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 23 | eqss 3965 | . . . . . . . . 9 ⊢ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
| 24 | 23 | rbaib 538 | . . . . . . . 8 ⊢ ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 25 | 22, 24 | syl6 35 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 26 | 25 | adantld 490 | . . . . . 6 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 27 | 26 | pm5.74d 273 | . . . . 5 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 28 | 14, 1 | chub2i 31406 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 29 | sstr 3958 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) | |
| 30 | 28, 29 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) |
| 31 | 30 | pm4.71ri 560 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵)) |
| 32 | 31 | anbi2i 623 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
| 33 | anass 468 | . . . . . . 7 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) | |
| 34 | 32, 33 | bitr4i 278 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵)) |
| 35 | 34 | imbi1i 349 | . . . . 5 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 36 | 27, 35 | bitr3di 286 | . . . 4 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 37 | impexp 450 | . . . 4 ⊢ (((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | |
| 38 | 36, 37 | bitrdi 287 | . . 3 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
| 39 | 38 | ralbiia 3074 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 40 | 1, 14 | mdsl1i 32257 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |
| 41 | 39, 40 | bitr2i 276 | 1 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 (class class class)co 7390 Cℋ cch 30865 ∨ℋ chj 30869 𝑀ℋ cmd 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 ax-hcompl 31138 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-lm 23123 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cfil 25162 df-cau 25163 df-cmet 25164 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-dip 30637 df-ssp 30658 df-ph 30749 df-cbn 30799 df-hnorm 30904 df-hba 30905 df-hvsub 30907 df-hlim 30908 df-hcau 30909 df-sh 31143 df-ch 31157 df-oc 31188 df-ch0 31189 df-shs 31244 df-chj 31246 df-md 32216 |
| This theorem is referenced by: mdsl2bi 32259 mdslmd1i 32265 |
| Copyright terms: Public domain | W3C validator |