| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > mdsl2i | Structured version Visualization version GIF version | ||
| Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mdsl.1 | ⊢ 𝐴 ∈ Cℋ |
| mdsl.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| mdsl2i | ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdsl.1 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ Cℋ | |
| 2 | chub1 31526 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) |
| 4 | iba 527 | . . . . . . . . . . . 12 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵))) | |
| 5 | ssin 4239 | . . . . . . . . . . . 12 ⊢ ((𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) | |
| 6 | 4, 5 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 7 | 3, 6 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 8 | chub2 31527 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) | |
| 9 | 1, 8 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) |
| 10 | 9 | ssrind 4244 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
| 11 | 7, 10 | jctird 526 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 12 | chjcl 31376 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) | |
| 13 | 1, 12 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) |
| 14 | mdsl.2 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ Cℋ | |
| 15 | chincl 31518 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∨ℋ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) | |
| 16 | 14, 15 | mpan2 691 | . . . . . . . . . . 11 ⊢ ((𝑥 ∨ℋ 𝐴) ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
| 17 | 13, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
| 18 | 1, 14 | chincli 31479 | . . . . . . . . . . 11 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| 19 | chlub 31528 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
| 20 | 18, 19 | mp3an2 1451 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 21 | 17, 20 | mpdan 687 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 22 | 11, 21 | sylibd 239 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
| 23 | eqss 3999 | . . . . . . . . 9 ⊢ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
| 24 | 23 | rbaib 538 | . . . . . . . 8 ⊢ ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 25 | 22, 24 | syl6 35 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 26 | 25 | adantld 490 | . . . . . 6 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 27 | 26 | pm5.74d 273 | . . . . 5 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 28 | 14, 1 | chub2i 31489 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 29 | sstr 3992 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) | |
| 30 | 28, 29 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) |
| 31 | 30 | pm4.71ri 560 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵)) |
| 32 | 31 | anbi2i 623 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
| 33 | anass 468 | . . . . . . 7 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) | |
| 34 | 32, 33 | bitr4i 278 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵)) |
| 35 | 34 | imbi1i 349 | . . . . 5 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| 36 | 27, 35 | bitr3di 286 | . . . 4 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 37 | impexp 450 | . . . 4 ⊢ (((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | |
| 38 | 36, 37 | bitrdi 287 | . . 3 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
| 39 | 38 | ralbiia 3091 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 40 | 1, 14 | mdsl1i 32340 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |
| 41 | 39, 40 | bitr2i 276 | 1 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 Cℋ cch 30948 ∨ℋ chj 30952 𝑀ℋ cmd 30985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 ax-hcompl 31221 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-cn 23235 df-cnp 23236 df-lm 23237 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cfil 25289 df-cau 25290 df-cmet 25291 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-dip 30720 df-ssp 30741 df-ph 30832 df-cbn 30882 df-hnorm 30987 df-hba 30988 df-hvsub 30990 df-hlim 30991 df-hcau 30992 df-sh 31226 df-ch 31240 df-oc 31271 df-ch0 31272 df-shs 31327 df-chj 31329 df-md 32299 |
| This theorem is referenced by: mdsl2bi 32342 mdslmd1i 32348 |
| Copyright terms: Public domain | W3C validator |