![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdsl2i | Structured version Visualization version GIF version |
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdsl.1 | ⊢ 𝐴 ∈ Cℋ |
mdsl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
mdsl2i | ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsl.1 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ Cℋ | |
2 | chub1 31535 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) | |
3 | 1, 2 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝑥 ⊆ (𝑥 ∨ℋ 𝐴)) |
4 | iba 527 | . . . . . . . . . . . 12 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵))) | |
5 | ssin 4246 | . . . . . . . . . . . 12 ⊢ ((𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) | |
6 | 4, 5 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ (𝑥 ∨ℋ 𝐴) ↔ 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
7 | 3, 6 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
8 | chub2 31536 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) | |
9 | 1, 8 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → 𝐴 ⊆ (𝑥 ∨ℋ 𝐴)) |
10 | 9 | ssrind 4251 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
11 | 7, 10 | jctird 526 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)))) |
12 | chjcl 31385 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) | |
13 | 1, 12 | mpan2 691 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (𝑥 ∨ℋ 𝐴) ∈ Cℋ ) |
14 | mdsl.2 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ Cℋ | |
15 | chincl 31527 | . . . . . . . . . . . 12 ⊢ (((𝑥 ∨ℋ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) | |
16 | 14, 15 | mpan2 691 | . . . . . . . . . . 11 ⊢ ((𝑥 ∨ℋ 𝐴) ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
17 | 13, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) |
18 | 1, 14 | chincli 31488 | . . . . . . . . . . 11 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
19 | chlub 31537 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
20 | 18, 19 | mp3an2 1448 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∈ Cℋ ) → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
21 | 17, 20 | mpdan 687 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) ↔ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
22 | 11, 21 | sylibd 239 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) |
23 | eqss 4010 | . . . . . . . . 9 ⊢ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ∧ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵))) | |
24 | 23 | rbaib 538 | . . . . . . . 8 ⊢ ((𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
25 | 22, 24 | syl6 35 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
26 | 25 | adantld 490 | . . . . . 6 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
27 | 26 | pm5.74d 273 | . . . . 5 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
28 | 14, 1 | chub2i 31498 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
29 | sstr 4003 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) | |
30 | 28, 29 | mpan2 691 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) |
31 | 30 | pm4.71ri 560 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵)) |
32 | 31 | anbi2i 623 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
33 | anass 468 | . . . . . . 7 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) | |
34 | 32, 33 | bitr4i 278 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵)) |
35 | 34 | imbi1i 349 | . . . . 5 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
36 | 27, 35 | bitr3di 286 | . . . 4 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
37 | impexp 450 | . . . 4 ⊢ (((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | |
38 | 36, 37 | bitrdi 287 | . . 3 ⊢ (𝑥 ∈ Cℋ → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
39 | 38 | ralbiia 3088 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
40 | 1, 14 | mdsl1i 32349 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |
41 | 39, 40 | bitr2i 276 | 1 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 class class class wbr 5147 (class class class)co 7430 Cℋ cch 30957 ∨ℋ chj 30961 𝑀ℋ cmd 30994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cc 10472 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvmulass 31035 ax-hvdistr1 31036 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 ax-hcompl 31230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-acn 9979 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-rlim 15521 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-cn 23250 df-cnp 23251 df-lm 23252 df-haus 23338 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-tms 24347 df-cfil 25302 df-cau 25303 df-cmet 25304 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-dip 30729 df-ssp 30750 df-ph 30841 df-cbn 30891 df-hnorm 30996 df-hba 30997 df-hvsub 30999 df-hlim 31000 df-hcau 31001 df-sh 31235 df-ch 31249 df-oc 31280 df-ch0 31281 df-shs 31336 df-chj 31338 df-md 32308 |
This theorem is referenced by: mdsl2bi 32351 mdslmd1i 32357 |
Copyright terms: Public domain | W3C validator |