MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmword Structured version   Visualization version   GIF version

Theorem nnmword 8558
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem nnmword
StepHypRef Expression
1 iba 527 . . . 4 (∅ ∈ 𝐶 → (𝐵𝐴 ↔ (𝐵𝐴 ∧ ∅ ∈ 𝐶)))
2 nnmord 8557 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
323com12 1123 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵𝐴 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
41, 3sylan9bbr 510 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 ↔ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
54notbid 318 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ 𝐵𝐴 ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
6 simpl1 1192 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
7 nnon 7812 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
86, 7syl 17 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ On)
9 simpl2 1193 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
10 nnon 7812 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
119, 10syl 17 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ On)
12 ontri1 6345 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
138, 11, 12syl2anc 584 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
14 simpl3 1194 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
15 nnmcl 8537 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) ∈ ω)
1614, 6, 15syl2anc 584 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ ω)
17 nnon 7812 . . . 4 ((𝐶 ·o 𝐴) ∈ ω → (𝐶 ·o 𝐴) ∈ On)
1816, 17syl 17 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ On)
19 nnmcl 8537 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) ∈ ω)
2014, 9, 19syl2anc 584 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐵) ∈ ω)
21 nnon 7812 . . . 4 ((𝐶 ·o 𝐵) ∈ ω → (𝐶 ·o 𝐵) ∈ On)
2220, 21syl 17 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐵) ∈ On)
23 ontri1 6345 . . 3 (((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
2418, 22, 23syl2anc 584 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ¬ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
255, 13, 243bitr4d 311 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3905  c0 4286  Oncon0 6311  (class class class)co 7353  ωcom 7806   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400
This theorem is referenced by:  nnmcan  8559  nnmwordi  8560
  Copyright terms: Public domain W3C validator