Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-diagval2 Structured version   Visualization version   GIF version

Theorem bj-diagval2 37170
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the diagonal function, whereas bj-diagval 37169 views it as the functionalized identity. See df-bj-diag 37168 for the terminology. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-diagval2 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))

Proof of Theorem bj-diagval2
StepHypRef Expression
1 bj-diagval 37169 . 2 (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))
2 idinxpresid 6022 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
31, 2eqtr4di 2783 1 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916   I cid 5535   × cxp 5639  cres 5643  cfv 6514  Idcdiag2 37167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-bj-diag 37168
This theorem is referenced by:  bj-eldiag  37171  bj-eldiag2  37172
  Copyright terms: Public domain W3C validator