| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-diagval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the diagonal function, whereas bj-diagval 37155 views it as the functionalized identity. See df-bj-diag 37154 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-diagval2 | ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-diagval 37155 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) | |
| 2 | idinxpresid 6008 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 3 | 1, 2 | eqtr4di 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 I cid 5525 × cxp 5629 ↾ cres 5633 ‘cfv 6499 Idcdiag2 37153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-bj-diag 37154 |
| This theorem is referenced by: bj-eldiag 37157 bj-eldiag2 37158 |
| Copyright terms: Public domain | W3C validator |