| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-diagval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the diagonal function, whereas bj-diagval 37175 views it as the functionalized identity. See df-bj-diag 37174 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-diagval2 | ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-diagval 37175 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) | |
| 2 | idinxpresid 6066 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 3 | 1, 2 | eqtr4di 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 I cid 5577 × cxp 5683 ↾ cres 5687 ‘cfv 6561 Idcdiag2 37173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-bj-diag 37174 |
| This theorem is referenced by: bj-eldiag 37177 bj-eldiag2 37178 |
| Copyright terms: Public domain | W3C validator |