Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 5898 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-in 3899 df-opab 5144 df-xp 5606 df-res 5612 |
This theorem is referenced by: reseq12i 5901 rescom 5929 resdmdfsn 5953 idinxpresid 5967 rescnvcnv 6122 resdm2 6149 funcnvres 6541 resasplit 6674 fresaunres2 6676 fresaunres1 6677 resdif 6767 resin 6768 funcocnv2 6771 fvn0ssdmfun 6984 residpr 7047 fprlem1 8147 wfrlem5OLD 8175 domss2 8961 ordtypelem1 9325 frrlem15 9563 ackbij2lem3 10047 facnn 14039 fac0 14040 hashresfn 14104 relexpcnv 14795 divcnvshft 15616 ruclem4 15992 fsets 16919 setsid 16958 join0 18172 meet0 18173 symgfixelsi 19092 psgnsn 19177 dprd2da 19694 ply1plusgfvi 21462 uptx 22825 txcn 22826 ressxms 23730 ressms 23731 iscmet3lem3 24503 volres 24741 dvlip 25206 dvne0 25224 lhop 25229 dflog2 25765 dfrelog 25770 dvlog 25855 wilthlem2 26267 0grsubgr 27694 0pth 28538 1pthdlem1 28548 eupth2lemb 28650 ex-fpar 28875 fressupp 31071 df1stres 31085 df2ndres 31086 ffsrn 31113 resf1o 31114 fpwrelmapffs 31118 cycpmconjv 31458 sitmcl 32367 eulerpartlemn 32397 bnj1326 33055 satfv1lem 33373 divcnvlin 33747 eqfunressuc 33785 nosupbnd2lem1 33967 noinfbnd2lem1 33982 poimirlem9 35834 zrdivrng 36159 isdrngo1 36162 ressucdifsn 36452 cnvresrn 36561 disjsuc 36973 eldioph4b 40828 diophren 40830 rclexi 41436 rtrclex 41438 cnvrcl0 41446 dfrtrcl5 41450 dfrcl2 41495 relexpiidm 41525 relexp01min 41534 relexpaddss 41539 seff 42140 sblpnf 42141 radcnvrat 42145 hashnzfzclim 42153 dvresioo 43691 fourierdlem72 43948 fourierdlem80 43956 fourierdlem94 43970 fourierdlem103 43979 fourierdlem104 43980 fourierdlem113 43989 fouriersw 44001 sge0split 44177 rngcidALTV 45793 ringcidALTV 45856 |
Copyright terms: Public domain | W3C validator |