| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5934 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: reseq12i 5937 rescom 5962 resdmdfsn 5991 idinxpresid 6008 rescnvcnv 6165 resdm2 6192 funcnvres 6578 resasplit 6712 fresaunres2 6714 fresaunres1 6715 resdif 6803 resin 6804 funcocnv2 6807 fvn0ssdmfun 7028 residpr 7097 eqfunressuc 7318 fprlem1 8256 domss2 9077 ordtypelem1 9447 frrlem15 9686 ackbij2lem3 10169 facnn 14216 fac0 14217 hashresfn 14281 relexpcnv 14977 divcnvshft 15797 ruclem4 16178 fsets 17115 setsid 17153 join0 18340 meet0 18341 symgfixelsi 19341 psgnsn 19426 dprd2da 19950 ply1plusgfvi 22102 uptx 23488 txcn 23489 ressxms 24389 ressms 24390 iscmet3lem3 25166 volres 25405 dvlip 25874 dvne0 25892 lhop 25897 dflog2 26445 dfrelog 26450 dvlog 26536 wilthlem2 26955 nosupbnd2lem1 27603 noinfbnd2lem1 27618 0grsubgr 29181 0pth 30027 1pthdlem1 30037 eupth2lemb 30139 ex-fpar 30364 fressupp 32584 df1stres 32600 df2ndres 32601 ffsrn 32625 resf1o 32626 fpwrelmapffs 32630 cycpmconjv 33072 sitmcl 34315 eulerpartlemn 34345 bnj1326 34989 satfv1lem 35322 divcnvlin 35693 poimirlem9 37596 zrdivrng 37920 isdrngo1 37923 ressucdifsn 38206 cnvresrn 38303 disjsuc 38724 eldioph4b 42772 diophren 42774 rclexi 43577 rtrclex 43579 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 relexpiidm 43666 relexp01min 43675 relexpaddss 43680 seff 44271 sblpnf 44272 radcnvrat 44276 hashnzfzclim 44284 dvresioo 45892 fourierdlem72 46149 fourierdlem80 46157 fourierdlem94 46171 fourierdlem103 46180 fourierdlem104 46181 fourierdlem113 46190 fouriersw 46202 sge0split 46380 isubgrgrim 47902 stgr0 47932 stgr1 47933 rngcidALTV 48235 ringcidALTV 48269 tposresg 48839 tposres3 48842 tposresxp 48844 |
| Copyright terms: Public domain | W3C validator |