| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5929 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-in 3912 df-opab 5158 df-xp 5629 df-res 5635 |
| This theorem is referenced by: reseq12i 5932 rescom 5957 resdmdfsn 5986 idinxpresid 6003 rescnvcnv 6157 resdm2 6184 funcnvres 6564 resasplit 6698 fresaunres2 6700 fresaunres1 6701 resdif 6789 resin 6790 funcocnv2 6793 fvn0ssdmfun 7012 residpr 7081 eqfunressuc 7302 fprlem1 8240 domss2 9060 ordtypelem1 9429 frrlem15 9672 ackbij2lem3 10153 facnn 14200 fac0 14201 hashresfn 14265 relexpcnv 14960 divcnvshft 15780 ruclem4 16161 fsets 17098 setsid 17136 join0 18327 meet0 18328 symgfixelsi 19332 psgnsn 19417 dprd2da 19941 ply1plusgfvi 22142 uptx 23528 txcn 23529 ressxms 24429 ressms 24430 iscmet3lem3 25206 volres 25445 dvlip 25914 dvne0 25932 lhop 25937 dflog2 26485 dfrelog 26490 dvlog 26576 wilthlem2 26995 nosupbnd2lem1 27643 noinfbnd2lem1 27658 0grsubgr 29241 0pth 30087 1pthdlem1 30097 eupth2lemb 30199 ex-fpar 30424 fressupp 32644 df1stres 32660 df2ndres 32661 ffsrn 32685 resf1o 32686 fpwrelmapffs 32690 cycpmconjv 33097 sitmcl 34321 eulerpartlemn 34351 bnj1326 34995 satfv1lem 35337 divcnvlin 35708 poimirlem9 37611 zrdivrng 37935 isdrngo1 37938 ressucdifsn 38221 cnvresrn 38318 disjsuc 38739 eldioph4b 42787 diophren 42789 rclexi 43591 rtrclex 43593 cnvrcl0 43601 dfrtrcl5 43605 dfrcl2 43650 relexpiidm 43680 relexp01min 43689 relexpaddss 43694 seff 44285 sblpnf 44286 radcnvrat 44290 hashnzfzclim 44298 dvresioo 45906 fourierdlem72 46163 fourierdlem80 46171 fourierdlem94 46185 fourierdlem103 46194 fourierdlem104 46195 fourierdlem113 46204 fouriersw 46216 sge0split 46394 isubgrgrim 47917 stgr0 47948 stgr1 47949 rngcidALTV 48262 ringcidALTV 48296 tposresg 48866 tposres3 48869 tposresxp 48871 |
| Copyright terms: Public domain | W3C validator |