| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5945 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: reseq12i 5948 rescom 5973 resdmdfsn 6002 idinxpresid 6019 rescnvcnv 6177 resdm2 6204 funcnvres 6594 resasplit 6730 fresaunres2 6732 fresaunres1 6733 resdif 6821 resin 6822 funcocnv2 6825 fvn0ssdmfun 7046 residpr 7115 eqfunressuc 7336 fprlem1 8279 domss2 9100 ordtypelem1 9471 frrlem15 9710 ackbij2lem3 10193 facnn 14240 fac0 14241 hashresfn 14305 relexpcnv 15001 divcnvshft 15821 ruclem4 16202 fsets 17139 setsid 17177 join0 18364 meet0 18365 symgfixelsi 19365 psgnsn 19450 dprd2da 19974 ply1plusgfvi 22126 uptx 23512 txcn 23513 ressxms 24413 ressms 24414 iscmet3lem3 25190 volres 25429 dvlip 25898 dvne0 25916 lhop 25921 dflog2 26469 dfrelog 26474 dvlog 26560 wilthlem2 26979 nosupbnd2lem1 27627 noinfbnd2lem1 27642 0grsubgr 29205 0pth 30054 1pthdlem1 30064 eupth2lemb 30166 ex-fpar 30391 fressupp 32611 df1stres 32627 df2ndres 32628 ffsrn 32652 resf1o 32653 fpwrelmapffs 32657 cycpmconjv 33099 sitmcl 34342 eulerpartlemn 34372 bnj1326 35016 satfv1lem 35349 divcnvlin 35720 poimirlem9 37623 zrdivrng 37947 isdrngo1 37950 ressucdifsn 38233 cnvresrn 38330 disjsuc 38751 eldioph4b 42799 diophren 42801 rclexi 43604 rtrclex 43606 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 relexpiidm 43693 relexp01min 43702 relexpaddss 43707 seff 44298 sblpnf 44299 radcnvrat 44303 hashnzfzclim 44311 dvresioo 45919 fourierdlem72 46176 fourierdlem80 46184 fourierdlem94 46198 fourierdlem103 46207 fourierdlem104 46208 fourierdlem113 46217 fouriersw 46229 sge0split 46407 isubgrgrim 47929 stgr0 47959 stgr1 47960 rngcidALTV 48262 ringcidALTV 48296 tposresg 48866 tposres3 48869 tposresxp 48871 |
| Copyright terms: Public domain | W3C validator |