| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5918 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 df-opab 5149 df-xp 5617 df-res 5623 |
| This theorem is referenced by: reseq12i 5921 rescom 5946 resdmdfsn 5975 idinxpresid 5992 rescnvcnv 6146 resdm2 6173 funcnvres 6554 resasplit 6688 fresaunres2 6690 fresaunres1 6691 resdif 6779 resin 6780 funcocnv2 6783 fvn0ssdmfun 7002 residpr 7071 eqfunressuc 7290 fprlem1 8225 domss2 9044 ordtypelem1 9399 frrlem15 9645 ackbij2lem3 10126 facnn 14177 fac0 14178 hashresfn 14242 relexpcnv 14937 divcnvshft 15757 ruclem4 16138 fsets 17075 setsid 17113 join0 18304 meet0 18305 symgfixelsi 19342 psgnsn 19427 dprd2da 19951 ply1plusgfvi 22149 uptx 23535 txcn 23536 ressxms 24435 ressms 24436 iscmet3lem3 25212 volres 25451 dvlip 25920 dvne0 25938 lhop 25943 dflog2 26491 dfrelog 26496 dvlog 26582 wilthlem2 27001 nosupbnd2lem1 27649 noinfbnd2lem1 27664 0grsubgr 29251 0pth 30097 1pthdlem1 30107 eupth2lemb 30209 ex-fpar 30434 fressupp 32661 df1stres 32677 df2ndres 32678 ffsrn 32703 resf1o 32705 fpwrelmapffs 32709 cycpmconjv 33103 sitmcl 34356 eulerpartlemn 34386 bnj1326 35030 satfv1lem 35398 divcnvlin 35769 poimirlem9 37669 zrdivrng 37993 isdrngo1 37996 ressucdifsn 38279 cnvresrn 38376 disjsuc 38797 eldioph4b 42844 diophren 42846 rclexi 43648 rtrclex 43650 cnvrcl0 43658 dfrtrcl5 43662 dfrcl2 43707 relexpiidm 43737 relexp01min 43746 relexpaddss 43751 seff 44342 sblpnf 44343 radcnvrat 44347 hashnzfzclim 44355 dvresioo 45959 fourierdlem72 46216 fourierdlem80 46224 fourierdlem94 46238 fourierdlem103 46247 fourierdlem104 46248 fourierdlem113 46257 fouriersw 46269 sge0split 46447 isubgrgrim 47960 stgr0 47991 stgr1 47992 rngcidALTV 48305 ringcidALTV 48339 tposresg 48909 tposres3 48912 tposresxp 48914 |
| Copyright terms: Public domain | W3C validator |