| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5948 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: reseq12i 5951 rescom 5976 resdmdfsn 6005 idinxpresid 6022 rescnvcnv 6180 resdm2 6207 funcnvres 6597 resasplit 6733 fresaunres2 6735 fresaunres1 6736 resdif 6824 resin 6825 funcocnv2 6828 fvn0ssdmfun 7049 residpr 7118 eqfunressuc 7339 fprlem1 8282 domss2 9106 ordtypelem1 9478 frrlem15 9717 ackbij2lem3 10200 facnn 14247 fac0 14248 hashresfn 14312 relexpcnv 15008 divcnvshft 15828 ruclem4 16209 fsets 17146 setsid 17184 join0 18371 meet0 18372 symgfixelsi 19372 psgnsn 19457 dprd2da 19981 ply1plusgfvi 22133 uptx 23519 txcn 23520 ressxms 24420 ressms 24421 iscmet3lem3 25197 volres 25436 dvlip 25905 dvne0 25923 lhop 25928 dflog2 26476 dfrelog 26481 dvlog 26567 wilthlem2 26986 nosupbnd2lem1 27634 noinfbnd2lem1 27649 0grsubgr 29212 0pth 30061 1pthdlem1 30071 eupth2lemb 30173 ex-fpar 30398 fressupp 32618 df1stres 32634 df2ndres 32635 ffsrn 32659 resf1o 32660 fpwrelmapffs 32664 cycpmconjv 33106 sitmcl 34349 eulerpartlemn 34379 bnj1326 35023 satfv1lem 35356 divcnvlin 35727 poimirlem9 37630 zrdivrng 37954 isdrngo1 37957 ressucdifsn 38240 cnvresrn 38337 disjsuc 38758 eldioph4b 42806 diophren 42808 rclexi 43611 rtrclex 43613 cnvrcl0 43621 dfrtrcl5 43625 dfrcl2 43670 relexpiidm 43700 relexp01min 43709 relexpaddss 43714 seff 44305 sblpnf 44306 radcnvrat 44310 hashnzfzclim 44318 dvresioo 45926 fourierdlem72 46183 fourierdlem80 46191 fourierdlem94 46205 fourierdlem103 46214 fourierdlem104 46215 fourierdlem113 46224 fouriersw 46236 sge0split 46414 isubgrgrim 47933 stgr0 47963 stgr1 47964 rngcidALTV 48266 ringcidALTV 48300 tposresg 48870 tposres3 48873 tposresxp 48875 |
| Copyright terms: Public domain | W3C validator |