![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 6004 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: reseq12i 6007 rescom 6032 resdmdfsn 6060 idinxpresid 6077 rescnvcnv 6235 resdm2 6262 funcnvres 6656 resasplit 6791 fresaunres2 6793 fresaunres1 6794 resdif 6883 resin 6884 funcocnv2 6887 fvn0ssdmfun 7108 residpr 7177 eqfunressuc 7397 fprlem1 8341 wfrlem5OLD 8369 domss2 9202 ordtypelem1 9587 frrlem15 9826 ackbij2lem3 10309 facnn 14324 fac0 14325 hashresfn 14389 relexpcnv 15084 divcnvshft 15903 ruclem4 16282 fsets 17216 setsid 17255 join0 18475 meet0 18476 symgfixelsi 19477 psgnsn 19562 dprd2da 20086 ply1plusgfvi 22264 uptx 23654 txcn 23655 ressxms 24559 ressms 24560 iscmet3lem3 25343 volres 25582 dvlip 26052 dvne0 26070 lhop 26075 dflog2 26620 dfrelog 26625 dvlog 26711 wilthlem2 27130 nosupbnd2lem1 27778 noinfbnd2lem1 27793 0grsubgr 29313 0pth 30157 1pthdlem1 30167 eupth2lemb 30269 ex-fpar 30494 fressupp 32700 df1stres 32715 df2ndres 32716 ffsrn 32743 resf1o 32744 fpwrelmapffs 32748 cycpmconjv 33135 sitmcl 34316 eulerpartlemn 34346 bnj1326 35002 satfv1lem 35330 divcnvlin 35695 poimirlem9 37589 zrdivrng 37913 isdrngo1 37916 ressucdifsn 38200 cnvresrn 38304 disjsuc 38715 eldioph4b 42767 diophren 42769 rclexi 43577 rtrclex 43579 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 relexpiidm 43666 relexp01min 43675 relexpaddss 43680 seff 44278 sblpnf 44279 radcnvrat 44283 hashnzfzclim 44291 dvresioo 45842 fourierdlem72 46099 fourierdlem80 46107 fourierdlem94 46121 fourierdlem103 46130 fourierdlem104 46131 fourierdlem113 46140 fouriersw 46152 sge0split 46330 isubgrgrim 47781 rngcidALTV 47997 ringcidALTV 48031 |
Copyright terms: Public domain | W3C validator |