| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5961 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-in 3933 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: reseq12i 5964 rescom 5989 resdmdfsn 6018 idinxpresid 6035 rescnvcnv 6193 resdm2 6220 funcnvres 6614 resasplit 6748 fresaunres2 6750 fresaunres1 6751 resdif 6839 resin 6840 funcocnv2 6843 fvn0ssdmfun 7064 residpr 7133 eqfunressuc 7354 fprlem1 8299 wfrlem5OLD 8327 domss2 9150 ordtypelem1 9532 frrlem15 9771 ackbij2lem3 10254 facnn 14293 fac0 14294 hashresfn 14358 relexpcnv 15054 divcnvshft 15871 ruclem4 16252 fsets 17188 setsid 17226 join0 18415 meet0 18416 symgfixelsi 19416 psgnsn 19501 dprd2da 20025 ply1plusgfvi 22177 uptx 23563 txcn 23564 ressxms 24464 ressms 24465 iscmet3lem3 25242 volres 25481 dvlip 25950 dvne0 25968 lhop 25973 dflog2 26521 dfrelog 26526 dvlog 26612 wilthlem2 27031 nosupbnd2lem1 27679 noinfbnd2lem1 27694 0grsubgr 29257 0pth 30106 1pthdlem1 30116 eupth2lemb 30218 ex-fpar 30443 fressupp 32665 df1stres 32681 df2ndres 32682 ffsrn 32706 resf1o 32707 fpwrelmapffs 32711 cycpmconjv 33153 sitmcl 34383 eulerpartlemn 34413 bnj1326 35057 satfv1lem 35384 divcnvlin 35750 poimirlem9 37653 zrdivrng 37977 isdrngo1 37980 ressucdifsn 38263 cnvresrn 38366 disjsuc 38777 eldioph4b 42834 diophren 42836 rclexi 43639 rtrclex 43641 cnvrcl0 43649 dfrtrcl5 43653 dfrcl2 43698 relexpiidm 43728 relexp01min 43737 relexpaddss 43742 seff 44333 sblpnf 44334 radcnvrat 44338 hashnzfzclim 44346 dvresioo 45950 fourierdlem72 46207 fourierdlem80 46215 fourierdlem94 46229 fourierdlem103 46238 fourierdlem104 46239 fourierdlem113 46248 fouriersw 46260 sge0split 46438 isubgrgrim 47942 stgr0 47972 stgr1 47973 rngcidALTV 48249 ringcidALTV 48283 tposresg 48853 tposres3 48856 tposresxp 48858 |
| Copyright terms: Public domain | W3C validator |