Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 5883 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-in 3898 df-opab 5141 df-xp 5594 df-res 5600 |
This theorem is referenced by: reseq12i 5886 rescom 5914 resdmdfsn 5938 idinxpresid 5952 rescnvcnv 6104 resdm2 6131 funcnvres 6508 resasplit 6640 fresaunres2 6642 fresaunres1 6643 resdif 6732 resin 6733 funcocnv2 6736 fvn0ssdmfun 6946 residpr 7009 fprlem1 8100 wfrlem5OLD 8128 domss2 8888 ordtypelem1 9238 frrlem15 9499 ackbij2lem3 9981 facnn 13970 fac0 13971 hashresfn 14035 relexpcnv 14727 divcnvshft 15548 ruclem4 15924 fsets 16851 setsid 16890 join0 18104 meet0 18105 symgfixelsi 19024 psgnsn 19109 dprd2da 19626 ply1plusgfvi 21394 uptx 22757 txcn 22758 ressxms 23662 ressms 23663 iscmet3lem3 24435 volres 24673 dvlip 25138 dvne0 25156 lhop 25161 dflog2 25697 dfrelog 25702 dvlog 25787 wilthlem2 26199 0grsubgr 27626 0pth 28468 1pthdlem1 28478 eupth2lemb 28580 ex-fpar 28805 fressupp 31001 df1stres 31015 df2ndres 31016 ffsrn 31043 resf1o 31044 fpwrelmapffs 31048 cycpmconjv 31388 sitmcl 32297 eulerpartlemn 32327 bnj1326 32985 satfv1lem 33303 divcnvlin 33677 eqfunressuc 33715 nosupbnd2lem1 33897 noinfbnd2lem1 33912 poimirlem9 35765 zrdivrng 36090 isdrngo1 36093 cnvresrn 36462 eldioph4b 40613 diophren 40615 rclexi 41176 rtrclex 41178 cnvrcl0 41186 dfrtrcl5 41190 dfrcl2 41235 relexpiidm 41265 relexp01min 41274 relexpaddss 41279 seff 41880 sblpnf 41881 radcnvrat 41885 hashnzfzclim 41893 dvresioo 43416 fourierdlem72 43673 fourierdlem80 43681 fourierdlem94 43695 fourierdlem103 43704 fourierdlem104 43705 fourierdlem113 43714 fouriersw 43726 sge0split 43901 rngcidALTV 45501 ringcidALTV 45564 |
Copyright terms: Public domain | W3C validator |