| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 5930 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-in 3905 df-opab 5158 df-xp 5627 df-res 5633 |
| This theorem is referenced by: reseq12i 5933 rescom 5958 resdmdfsn 5987 idinxpresid 6004 rescnvcnv 6159 resdm2 6186 funcnvres 6567 resasplit 6701 fresaunres2 6703 fresaunres1 6704 resdif 6792 resin 6793 funcocnv2 6796 fvn0ssdmfun 7016 residpr 7085 eqfunressuc 7304 fprlem1 8239 domss2 9060 ordtypelem1 9415 frrlem15 9661 ackbij2lem3 10142 facnn 14189 fac0 14190 hashresfn 14254 relexpcnv 14949 divcnvshft 15769 ruclem4 16150 fsets 17087 setsid 17125 join0 18317 meet0 18318 symgfixelsi 19355 psgnsn 19440 dprd2da 19964 ply1plusgfvi 22173 uptx 23560 txcn 23561 ressxms 24460 ressms 24461 iscmet3lem3 25237 volres 25476 dvlip 25945 dvne0 25963 lhop 25968 dflog2 26516 dfrelog 26521 dvlog 26607 wilthlem2 27026 nosupbnd2lem1 27674 noinfbnd2lem1 27689 0grsubgr 29277 0pth 30126 1pthdlem1 30136 eupth2lemb 30238 ex-fpar 30463 fressupp 32693 df1stres 32709 df2ndres 32710 ffsrn 32735 resf1o 32737 fpwrelmapffs 32741 cycpmconjv 33152 evlextv 33635 sitmcl 34436 eulerpartlemn 34466 bnj1326 35110 satfv1lem 35478 divcnvlin 35849 poimirlem9 37742 zrdivrng 38066 isdrngo1 38069 cnvresrn 38453 dfsucmap2 38550 ressucdifsn 38573 disjsuc 38930 eldioph4b 42968 diophren 42970 rclexi 43772 rtrclex 43774 cnvrcl0 43782 dfrtrcl5 43786 dfrcl2 43831 relexpiidm 43861 relexp01min 43870 relexpaddss 43875 seff 44466 sblpnf 44467 radcnvrat 44471 hashnzfzclim 44479 dvresioo 46081 fourierdlem72 46338 fourierdlem80 46346 fourierdlem94 46360 fourierdlem103 46369 fourierdlem104 46370 fourierdlem113 46379 fouriersw 46391 sge0split 46569 isubgrgrim 48091 stgr0 48122 stgr1 48123 rngcidALTV 48436 ringcidALTV 48470 tposresg 49039 tposres3 49042 tposresxp 49044 |
| Copyright terms: Public domain | W3C validator |