![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 5690 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ↾ cres 5409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-in 3836 df-opab 4992 df-xp 5413 df-res 5419 |
This theorem is referenced by: reseq12i 5693 rescom 5724 resdmdfsn 5746 rescnvcnv 5900 resdm2 5927 funcnvres 6265 resasplit 6377 fresaunres2 6379 fresaunres1 6380 resdif 6464 resin 6465 funcocnv2 6468 fvn0ssdmfun 6667 residpr 6728 wfrlem5 7763 domss2 8472 ordtypelem1 8777 ackbij2lem3 9461 facnn 13450 fac0 13451 hashresfn 13515 relexpcnv 14255 divcnvshft 15070 ruclem4 15447 fsets 16372 setsid 16394 meet0 17605 join0 17606 symgfixelsi 18324 psgnsn 18410 dprd2da 18914 ply1plusgfvi 20113 uptx 21937 txcn 21938 ressxms 22838 ressms 22839 iscmet3lem3 23596 volres 23832 dvlip 24293 dvne0 24311 lhop 24316 dflog2 24845 dfrelog 24850 dvlog 24935 wilthlem2 25348 0grsubgr 26763 0pth 27654 1pthdlem1 27664 eupth2lemb 27767 df1stres 30198 df2ndres 30199 ffsrn 30224 resf1o 30225 fpwrelmapffs 30229 sitmcl 31260 eulerpartlemn 31290 bnj1326 31949 divcnvlin 32490 eqfunressuc 32531 fprlem1 32664 frrlem15 32669 nosupbnd2lem1 32742 poimirlem9 34348 zrdivrng 34679 isdrngo1 34682 cnvresrn 35057 eldioph4b 38810 diophren 38812 rclexi 39344 rtrclex 39346 cnvrcl0 39354 dfrtrcl5 39358 dfrcl2 39388 relexpiidm 39418 relexp01min 39427 relexpaddss 39432 seff 40063 sblpnf 40064 radcnvrat 40068 hashnzfzclim 40076 dvresioo 41642 fourierdlem72 41900 fourierdlem80 41908 fourierdlem94 41922 fourierdlem103 41931 fourierdlem104 41932 fourierdlem113 41941 fouriersw 41953 sge0split 42128 rngcidALTV 43632 ringcidALTV 43695 |
Copyright terms: Public domain | W3C validator |