![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 5994 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 df-opab 5210 df-xp 5694 df-res 5700 |
This theorem is referenced by: reseq12i 5997 rescom 6022 resdmdfsn 6050 idinxpresid 6067 rescnvcnv 6225 resdm2 6252 funcnvres 6645 resasplit 6778 fresaunres2 6780 fresaunres1 6781 resdif 6869 resin 6870 funcocnv2 6873 fvn0ssdmfun 7093 residpr 7162 eqfunressuc 7380 fprlem1 8323 wfrlem5OLD 8351 domss2 9174 ordtypelem1 9555 frrlem15 9794 ackbij2lem3 10277 facnn 14310 fac0 14311 hashresfn 14375 relexpcnv 15070 divcnvshft 15887 ruclem4 16266 fsets 17202 setsid 17241 join0 18462 meet0 18463 symgfixelsi 19467 psgnsn 19552 dprd2da 20076 ply1plusgfvi 22258 uptx 23648 txcn 23649 ressxms 24553 ressms 24554 iscmet3lem3 25337 volres 25576 dvlip 26046 dvne0 26064 lhop 26069 dflog2 26616 dfrelog 26621 dvlog 26707 wilthlem2 27126 nosupbnd2lem1 27774 noinfbnd2lem1 27789 0grsubgr 29309 0pth 30153 1pthdlem1 30163 eupth2lemb 30265 ex-fpar 30490 fressupp 32702 df1stres 32718 df2ndres 32719 ffsrn 32746 resf1o 32747 fpwrelmapffs 32751 cycpmconjv 33144 sitmcl 34332 eulerpartlemn 34362 bnj1326 35018 satfv1lem 35346 divcnvlin 35712 poimirlem9 37615 zrdivrng 37939 isdrngo1 37942 ressucdifsn 38225 cnvresrn 38329 disjsuc 38740 eldioph4b 42798 diophren 42800 rclexi 43604 rtrclex 43606 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 relexpiidm 43693 relexp01min 43702 relexpaddss 43707 seff 44304 sblpnf 44305 radcnvrat 44309 hashnzfzclim 44317 dvresioo 45876 fourierdlem72 46133 fourierdlem80 46141 fourierdlem94 46155 fourierdlem103 46164 fourierdlem104 46165 fourierdlem113 46174 fouriersw 46186 sge0split 46364 isubgrgrim 47834 stgr0 47862 stgr1 47863 rngcidALTV 48117 ringcidALTV 48151 |
Copyright terms: Public domain | W3C validator |