| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version | ||
| Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
| Ref | Expression |
|---|---|
| idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid 5997 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 2 | inss2 4188 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
| 3 | 1, 2 | eqsstrri 3982 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3901 ⊆ wss 3902 I cid 5510 × cxp 5614 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-res 5628 |
| This theorem is referenced by: resiexg 7842 hartogslem1 9428 dfle2 13046 hausdiag 23561 qtophaus 33847 bj-imdirid 37226 bj-iminvid 37235 idresssidinxp 38348 rtrclex 43656 rtrclexi 43660 idhe 43826 |
| Copyright terms: Public domain | W3C validator |