![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version |
Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
Ref | Expression |
---|---|
idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 6037 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | inss2 4225 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
3 | 1, 2 | eqsstrri 4013 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3943 ⊆ wss 3944 I cid 5566 × cxp 5667 ↾ cres 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-res 5681 |
This theorem is referenced by: resiexg 7887 hartogslem1 9519 dfle2 13108 hausdiag 23078 qtophaus 32645 bj-imdirid 35869 bj-iminvid 35878 idresssidinxp 36980 rtrclex 42137 rtrclexi 42141 idhe 42307 |
Copyright terms: Public domain | W3C validator |