| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version | ||
| Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
| Ref | Expression |
|---|---|
| idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid 6019 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 2 | inss2 4201 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
| 3 | 1, 2 | eqsstrri 3994 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3913 ⊆ wss 3914 I cid 5532 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-res 5650 |
| This theorem is referenced by: resiexg 7888 hartogslem1 9495 dfle2 13107 hausdiag 23532 qtophaus 33826 bj-imdirid 37174 bj-iminvid 37183 idresssidinxp 38296 rtrclex 43606 rtrclexi 43610 idhe 43776 |
| Copyright terms: Public domain | W3C validator |