![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version |
Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
Ref | Expression |
---|---|
idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 6048 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | inss2 4230 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
3 | 1, 2 | eqsstrri 4018 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3948 ⊆ wss 3949 I cid 5574 × cxp 5675 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-res 5689 |
This theorem is referenced by: resiexg 7905 hartogslem1 9537 dfle2 13126 hausdiag 23149 qtophaus 32816 bj-imdirid 36067 bj-iminvid 36076 idresssidinxp 37177 rtrclex 42368 rtrclexi 42372 idhe 42538 |
Copyright terms: Public domain | W3C validator |