MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idssxp Structured version   Visualization version   GIF version

Theorem idssxp 6041
Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.)
Assertion
Ref Expression
idssxp ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)

Proof of Theorem idssxp
StepHypRef Expression
1 idinxpresid 6040 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
2 inss2 4218 . 2 ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
31, 2eqsstrri 4011 1 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  cin 3930  wss 3931   I cid 5552   × cxp 5657  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-res 5671
This theorem is referenced by:  resiexg  7913  hartogslem1  9561  dfle2  13168  hausdiag  23588  qtophaus  33872  bj-imdirid  37209  bj-iminvid  37218  idresssidinxp  38331  rtrclex  43608  rtrclexi  43612  idhe  43778
  Copyright terms: Public domain W3C validator