MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idssxp Structured version   Visualization version   GIF version

Theorem idssxp 6004
Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.)
Assertion
Ref Expression
idssxp ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)

Proof of Theorem idssxp
StepHypRef Expression
1 idinxpresid 6003 . 2 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
2 inss2 4187 . 2 ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
31, 2eqsstrri 3978 1 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  cin 3897  wss 3898   I cid 5515   × cxp 5619  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  resiexg  7850  hartogslem1  9437  dfle2  13050  hausdiag  23563  qtophaus  33872  bj-imdirid  37253  bj-iminvid  37262  idresssidinxp  38369  rtrclex  43737  rtrclexi  43741  idhe  43907
  Copyright terms: Public domain W3C validator