Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version |
Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
Ref | Expression |
---|---|
idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 5958 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | inss2 4166 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
3 | 1, 2 | eqsstrri 3958 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3888 ⊆ wss 3889 I cid 5490 × cxp 5589 ↾ cres 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-res 5603 |
This theorem is referenced by: resiexg 7781 hartogslem1 9329 dfle2 12909 hausdiag 22824 qtophaus 31814 bj-imdirid 35385 bj-iminvid 35394 idresssidinxp 36470 rtrclex 41249 rtrclexi 41253 idhe 41419 |
Copyright terms: Public domain | W3C validator |