| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idssxp | Structured version Visualization version GIF version | ||
| Description: A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
| Ref | Expression |
|---|---|
| idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid 6003 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 2 | inss2 4187 | . 2 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | |
| 3 | 1, 2 | eqsstrri 3978 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 ⊆ wss 3898 I cid 5515 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: resiexg 7850 hartogslem1 9437 dfle2 13050 hausdiag 23563 qtophaus 33872 bj-imdirid 37253 bj-iminvid 37262 idresssidinxp 38369 rtrclex 43737 rtrclexi 43741 idhe 43907 |
| Copyright terms: Public domain | W3C validator |