![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0icc | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonn0icc.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
vonn0icc.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
vonn0icc.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
vonn0icc.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
vonn0icc.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) |
Ref | Expression |
---|---|
vonn0icc | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonn0icc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | vonn0icc.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
3 | vonn0icc.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
4 | vonn0icc.i | . . . 4 ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) | |
5 | fveq2 6437 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) | |
6 | fveq2 6437 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
7 | 5, 6 | oveq12d 6928 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗)[,)(𝑏‘𝑗)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
8 | 7 | fveq2d 6441 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
9 | 8 | cbvprodv 15026 | . . . . . . . 8 ⊢ ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
10 | ifeq2 4313 | . . . . . . . 8 ⊢ (∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ (ℝ ↑𝑚 𝑥) ∧ 𝑏 ∈ (ℝ ↑𝑚 𝑥)) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
13 | 12 | mpt2eq3ia 6985 | . . . . 5 ⊢ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
14 | 13 | mpteq2i 4966 | . . . 4 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
15 | 1, 2, 3, 4, 14 | vonicc 41691 | . . 3 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵)) |
16 | 14 | fveq1i 6438 | . . . . 5 ⊢ ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋) = ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋) |
17 | 16 | oveqi 6923 | . . . 4 ⊢ (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
19 | 15, 18 | eqtrd 2861 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
20 | eqid 2825 | . . 3 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
21 | vonn0icc.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
22 | 20, 1, 21, 2, 3 | hoidmvn0val 41590 | . 2 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
23 | 2 | ffvelrnda 6613 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
24 | 3 | ffvelrnda 6613 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
25 | 23, 24 | voliccico 41008 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
26 | 25 | eqcomd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
27 | 26 | prodeq2dv 15033 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
28 | 19, 22, 27 | 3eqtrd 2865 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∅c0 4146 ifcif 4308 ↦ cmpt 4954 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 ↑𝑚 cmap 8127 Xcixp 8181 Fincfn 8228 ℝcr 10258 0cc0 10259 [,)cico 12472 [,]cicc 12473 ∏cprod 15015 volcvol 23636 volncvoln 41544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cc 9579 ax-ac2 9607 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-disj 4844 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-omul 7836 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-ac 9259 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-sum 14801 df-prod 15016 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-hom 16336 df-cco 16337 df-rest 16443 df-topn 16444 df-0g 16462 df-gsum 16463 df-topgen 16464 df-pt 16465 df-prds 16468 df-pws 16470 df-xrs 16522 df-qtop 16527 df-imas 16528 df-xps 16530 df-mre 16606 df-mrc 16607 df-acs 16609 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-mhm 17695 df-submnd 17696 df-grp 17786 df-minusg 17787 df-sbg 17788 df-mulg 17902 df-subg 17949 df-ghm 18016 df-cntz 18107 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-rnghom 19078 df-drng 19112 df-field 19113 df-subrg 19141 df-abv 19180 df-staf 19208 df-srng 19209 df-lmod 19228 df-lss 19296 df-lmhm 19388 df-lvec 19469 df-sra 19540 df-rgmod 19541 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-refld 20319 df-phl 20340 df-dsmm 20446 df-frlm 20461 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cn 21409 df-cnp 21410 df-cmp 21568 df-tx 21743 df-hmeo 21936 df-xms 22502 df-ms 22503 df-tms 22504 df-nm 22764 df-ngp 22765 df-tng 22766 df-nrg 22767 df-nlm 22768 df-cncf 23058 df-clm 23239 df-cph 23344 df-tcph 23345 df-rrx 23560 df-ovol 23637 df-vol 23638 df-salg 41318 df-sumge0 41369 df-mea 41456 df-ome 41496 df-caragen 41498 df-ovoln 41543 df-voln 41545 |
This theorem is referenced by: vonsn 41697 vonn0icc2 41698 |
Copyright terms: Public domain | W3C validator |