![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0icc | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonn0icc.x | β’ (π β π β Fin) |
vonn0icc.n | β’ (π β π β β ) |
vonn0icc.a | β’ (π β π΄:πβΆβ) |
vonn0icc.b | β’ (π β π΅:πβΆβ) |
vonn0icc.i | β’ πΌ = Xπ β π ((π΄βπ)[,](π΅βπ)) |
Ref | Expression |
---|---|
vonn0icc | β’ (π β ((volnβπ)βπΌ) = βπ β π (volβ((π΄βπ)[,](π΅βπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonn0icc.x | . . . 4 β’ (π β π β Fin) | |
2 | vonn0icc.a | . . . 4 β’ (π β π΄:πβΆβ) | |
3 | vonn0icc.b | . . . 4 β’ (π β π΅:πβΆβ) | |
4 | vonn0icc.i | . . . 4 β’ πΌ = Xπ β π ((π΄βπ)[,](π΅βπ)) | |
5 | fveq2 6891 | . . . . . . . . . . 11 β’ (π = π β (πβπ) = (πβπ)) | |
6 | fveq2 6891 | . . . . . . . . . . 11 β’ (π = π β (πβπ) = (πβπ)) | |
7 | 5, 6 | oveq12d 7426 | . . . . . . . . . 10 β’ (π = π β ((πβπ)[,)(πβπ)) = ((πβπ)[,)(πβπ))) |
8 | 7 | fveq2d 6895 | . . . . . . . . 9 β’ (π = π β (volβ((πβπ)[,)(πβπ))) = (volβ((πβπ)[,)(πβπ)))) |
9 | 8 | cbvprodv 15859 | . . . . . . . 8 β’ βπ β π₯ (volβ((πβπ)[,)(πβπ))) = βπ β π₯ (volβ((πβπ)[,)(πβπ))) |
10 | ifeq2 4533 | . . . . . . . 8 β’ (βπ β π₯ (volβ((πβπ)[,)(πβπ))) = βπ β π₯ (volβ((πβπ)[,)(πβπ))) β if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))) = if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 β’ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))) = if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))) |
12 | 11 | a1i 11 | . . . . . 6 β’ ((π β (β βm π₯) β§ π β (β βm π₯)) β if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))) = if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))) |
13 | 12 | mpoeq3ia 7486 | . . . . 5 β’ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))) = (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))) |
14 | 13 | mpteq2i 5253 | . . . 4 β’ (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) |
15 | 1, 2, 3, 4, 14 | vonicc 45391 | . . 3 β’ (π β ((volnβπ)βπΌ) = (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅)) |
16 | 14 | fveq1i 6892 | . . . . 5 β’ ((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ) = ((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ) |
17 | 16 | oveqi 7421 | . . . 4 β’ (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅) = (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅) |
18 | 17 | a1i 11 | . . 3 β’ (π β (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅) = (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅)) |
19 | 15, 18 | eqtrd 2772 | . 2 β’ (π β ((volnβπ)βπΌ) = (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅)) |
20 | eqid 2732 | . . 3 β’ (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) | |
21 | vonn0icc.n | . . 3 β’ (π β π β β ) | |
22 | 20, 1, 21, 2, 3 | hoidmvn0val 45290 | . 2 β’ (π β (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅) = βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) |
23 | 2 | ffvelcdmda 7086 | . . . . 5 β’ ((π β§ π β π) β (π΄βπ) β β) |
24 | 3 | ffvelcdmda 7086 | . . . . 5 β’ ((π β§ π β π) β (π΅βπ) β β) |
25 | 23, 24 | voliccico 44705 | . . . 4 β’ ((π β§ π β π) β (volβ((π΄βπ)[,](π΅βπ))) = (volβ((π΄βπ)[,)(π΅βπ)))) |
26 | 25 | eqcomd 2738 | . . 3 β’ ((π β§ π β π) β (volβ((π΄βπ)[,)(π΅βπ))) = (volβ((π΄βπ)[,](π΅βπ)))) |
27 | 26 | prodeq2dv 15866 | . 2 β’ (π β βπ β π (volβ((π΄βπ)[,)(π΅βπ))) = βπ β π (volβ((π΄βπ)[,](π΅βπ)))) |
28 | 19, 22, 27 | 3eqtrd 2776 | 1 β’ (π β ((volnβπ)βπΌ) = βπ β π (volβ((π΄βπ)[,](π΅βπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β c0 4322 ifcif 4528 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7408 β cmpo 7410 βm cmap 8819 Xcixp 8890 Fincfn 8938 βcr 11108 0cc0 11109 [,)cico 13325 [,]cicc 13326 βcprod 15848 volcvol 24979 volncvoln 45244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-ac2 10457 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-acn 9936 df-ac 10110 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-prod 15849 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-pws 17394 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-field 20359 df-abv 20424 df-staf 20452 df-srng 20453 df-lmod 20472 df-lss 20542 df-lmhm 20632 df-lvec 20713 df-sra 20784 df-rgmod 20785 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-cnfld 20944 df-refld 21157 df-phl 21178 df-dsmm 21286 df-frlm 21301 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cn 22730 df-cnp 22731 df-cmp 22890 df-tx 23065 df-hmeo 23258 df-xms 23825 df-ms 23826 df-tms 23827 df-nm 24090 df-ngp 24091 df-tng 24092 df-nrg 24093 df-nlm 24094 df-cncf 24393 df-clm 24578 df-cph 24684 df-tcph 24685 df-rrx 24901 df-ovol 24980 df-vol 24981 df-salg 45015 df-sumge0 45069 df-mea 45156 df-ome 45196 df-caragen 45198 df-ovoln 45243 df-voln 45245 |
This theorem is referenced by: vonsn 45397 vonn0icc2 45398 |
Copyright terms: Public domain | W3C validator |