| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0icc | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0icc.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0icc.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0icc.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| vonn0icc.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| vonn0icc.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) |
| Ref | Expression |
|---|---|
| vonn0icc | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0icc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | vonn0icc.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 3 | vonn0icc.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 4 | vonn0icc.i | . . . 4 ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) | |
| 5 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) | |
| 6 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
| 7 | 5, 6 | oveq12d 7364 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗)[,)(𝑏‘𝑗)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 8 | 7 | fveq2d 6826 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 9 | 8 | cbvprodv 15821 | . . . . . . . 8 ⊢ ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 10 | ifeq2 4477 | . . . . . . . 8 ⊢ (∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ (ℝ ↑m 𝑥) ∧ 𝑏 ∈ (ℝ ↑m 𝑥)) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 13 | 12 | mpoeq3ia 7424 | . . . . 5 ⊢ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))) = (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 14 | 13 | mpteq2i 5185 | . . . 4 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 15 | 1, 2, 3, 4, 14 | vonicc 46793 | . . 3 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵)) |
| 16 | 14 | fveq1i 6823 | . . . . 5 ⊢ ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋) = ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋) |
| 17 | 16 | oveqi 7359 | . . . 4 ⊢ (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 19 | 15, 18 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 20 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 21 | vonn0icc.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 22 | 20, 1, 21, 2, 3 | hoidmvn0val 46692 | . 2 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 23 | 2 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 24 | 3 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 25 | 23, 24 | voliccico 46107 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 26 | 25 | eqcomd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
| 27 | 26 | prodeq2dv 15829 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
| 28 | 19, 22, 27 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ifcif 4472 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Xcixp 8821 Fincfn 8869 ℝcr 11005 0cc0 11006 [,)cico 13247 [,]cicc 13248 ∏cprod 15810 volcvol 25391 volncvoln 46646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-pws 17353 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-field 20647 df-abv 20724 df-staf 20754 df-srng 20755 df-lmod 20795 df-lss 20865 df-lmhm 20956 df-lvec 21037 df-sra 21107 df-rgmod 21108 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-refld 21542 df-phl 21563 df-dsmm 21669 df-frlm 21684 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-nm 24497 df-ngp 24498 df-tng 24499 df-nrg 24500 df-nlm 24501 df-cncf 24798 df-clm 24990 df-cph 25095 df-tcph 25096 df-rrx 25312 df-ovol 25392 df-vol 25393 df-salg 46417 df-sumge0 46471 df-mea 46558 df-ome 46598 df-caragen 46600 df-ovoln 46645 df-voln 46647 |
| This theorem is referenced by: vonsn 46799 vonn0icc2 46800 |
| Copyright terms: Public domain | W3C validator |