| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reabssgn | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
| Ref | Expression |
|---|---|
| reabssgn | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11307 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | sgnval 15127 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 4 | 3 | oveq1d 7446 | . 2 ⊢ (𝐴 ∈ ℝ → ((sgn‘𝐴) · 𝐴) = (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴)) |
| 5 | ovif 7531 | . . . 4 ⊢ (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) | |
| 6 | ovif 7531 | . . . . 5 ⊢ (if(𝐴 < 0, -1, 1) · 𝐴) = if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) | |
| 7 | ifeq2 4530 | . . . . 5 ⊢ ((if(𝐴 < 0, -1, 1) · 𝐴) = if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) → if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)))) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) |
| 9 | 5, 8 | eqtri 2765 | . . 3 ⊢ (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) |
| 10 | mul02lem2 11438 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (0 · 𝐴) = 0) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 13 | 12 | abs00bd 15330 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (abs‘𝐴) = 0) |
| 14 | 11, 13 | eqtr4d 2780 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (0 · 𝐴) = (abs‘𝐴)) |
| 15 | recn 11245 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 16 | 15 | mulm1d 11715 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (-1 · 𝐴) = -𝐴) |
| 17 | 15 | mullidd 11279 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| 18 | 16, 17 | ifeq12d 4547 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = if(𝐴 < 0, -𝐴, 𝐴)) |
| 19 | reabsifneg 43645 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | |
| 20 | 18, 19 | eqtr4d 2780 | . . . . 5 ⊢ (𝐴 ∈ ℝ → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = (abs‘𝐴)) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 = 0) → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = (abs‘𝐴)) |
| 22 | 14, 21 | ifeqda 4562 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) = (abs‘𝐴)) |
| 23 | 9, 22 | eqtrid 2789 | . 2 ⊢ (𝐴 ∈ ℝ → (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = (abs‘𝐴)) |
| 24 | 4, 23 | eqtr2d 2778 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 ℝ*cxr 11294 < clt 11295 -cneg 11493 sgncsgn 15125 abscabs 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-sgn 15126 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |