| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reabssgn | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
| Ref | Expression |
|---|---|
| reabssgn | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11281 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | sgnval 15107 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 4 | 3 | oveq1d 7420 | . 2 ⊢ (𝐴 ∈ ℝ → ((sgn‘𝐴) · 𝐴) = (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴)) |
| 5 | ovif 7505 | . . . 4 ⊢ (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) | |
| 6 | ovif 7505 | . . . . 5 ⊢ (if(𝐴 < 0, -1, 1) · 𝐴) = if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) | |
| 7 | ifeq2 4505 | . . . . 5 ⊢ ((if(𝐴 < 0, -1, 1) · 𝐴) = if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) → if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)))) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ if(𝐴 = 0, (0 · 𝐴), (if(𝐴 < 0, -1, 1) · 𝐴)) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) |
| 9 | 5, 8 | eqtri 2758 | . . 3 ⊢ (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) |
| 10 | mul02lem2 11412 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (0 · 𝐴) = 0) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 13 | 12 | abs00bd 15310 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (abs‘𝐴) = 0) |
| 14 | 11, 13 | eqtr4d 2773 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (0 · 𝐴) = (abs‘𝐴)) |
| 15 | recn 11219 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 16 | 15 | mulm1d 11689 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (-1 · 𝐴) = -𝐴) |
| 17 | 15 | mullidd 11253 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| 18 | 16, 17 | ifeq12d 4522 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = if(𝐴 < 0, -𝐴, 𝐴)) |
| 19 | reabsifneg 43656 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | |
| 20 | 18, 19 | eqtr4d 2773 | . . . . 5 ⊢ (𝐴 ∈ ℝ → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = (abs‘𝐴)) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 𝐴 = 0) → if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴)) = (abs‘𝐴)) |
| 22 | 14, 21 | ifeqda 4537 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = 0, (0 · 𝐴), if(𝐴 < 0, (-1 · 𝐴), (1 · 𝐴))) = (abs‘𝐴)) |
| 23 | 9, 22 | eqtrid 2782 | . 2 ⊢ (𝐴 ∈ ℝ → (if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) · 𝐴) = (abs‘𝐴)) |
| 24 | 4, 23 | eqtr2d 2771 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 ℝ*cxr 11268 < clt 11269 -cneg 11467 sgncsgn 15105 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-sgn 15106 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |