| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0ioo.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0ioo.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0ioo.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| vonn0ioo.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| vonn0ioo.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) |
| Ref | Expression |
|---|---|
| vonn0ioo | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0ioo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | vonn0ioo.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 3 | vonn0ioo.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 4 | vonn0ioo.i | . . . 4 ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) | |
| 5 | fveq2 6858 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) | |
| 6 | fveq2 6858 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
| 7 | 5, 6 | oveq12d 7405 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗)[,)(𝑏‘𝑗)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 8 | 7 | fveq2d 6862 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 9 | 8 | cbvprodv 15880 | . . . . . . . 8 ⊢ ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 10 | ifeq2 4493 | . . . . . . . 8 ⊢ (∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ (ℝ ↑m 𝑥) ∧ 𝑏 ∈ (ℝ ↑m 𝑥)) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 13 | 12 | mpoeq3ia 7467 | . . . . 5 ⊢ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))) = (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 14 | 13 | mpteq2i 5203 | . . . 4 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 15 | 1, 2, 3, 4, 14 | vonioo 46680 | . . 3 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵)) |
| 16 | 14 | fveq1i 6859 | . . . . 5 ⊢ ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋) = ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋) |
| 17 | 16 | oveqi 7400 | . . . 4 ⊢ (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 19 | 15, 18 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 20 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 21 | vonn0ioo.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 22 | 20, 1, 21, 2, 3 | hoidmvn0val 46582 | . 2 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 23 | 19, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 Xcixp 8870 Fincfn 8918 ℝcr 11067 0cc0 11068 (,)cioo 13306 [,)cico 13308 ∏cprod 15869 volcvol 25364 volncvoln 46536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-pws 17412 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-abv 20718 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-refld 21514 df-phl 21535 df-dsmm 21641 df-frlm 21656 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cn 23114 df-cnp 23115 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-tng 24472 df-nrg 24473 df-nlm 24474 df-cncf 24771 df-clm 24963 df-cph 25068 df-tcph 25069 df-rrx 25285 df-ovol 25365 df-vol 25366 df-salg 46307 df-sumge0 46361 df-mea 46448 df-ome 46488 df-caragen 46490 df-ovoln 46535 df-voln 46537 |
| This theorem is referenced by: vonn0ioo2 46688 |
| Copyright terms: Public domain | W3C validator |