| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0ioo.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0ioo.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0ioo.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| vonn0ioo.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| vonn0ioo.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) |
| Ref | Expression |
|---|---|
| vonn0ioo | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0ioo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | vonn0ioo.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 3 | vonn0ioo.b | . . . 4 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 4 | vonn0ioo.i | . . . 4 ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) | |
| 5 | fveq2 6817 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑎‘𝑗) = (𝑎‘𝑘)) | |
| 6 | fveq2 6817 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
| 7 | 5, 6 | oveq12d 7359 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → ((𝑎‘𝑗)[,)(𝑏‘𝑗)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 8 | 7 | fveq2d 6821 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 9 | 8 | cbvprodv 15816 | . . . . . . . 8 ⊢ ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 10 | ifeq2 4475 | . . . . . . . 8 ⊢ (∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ (ℝ ↑m 𝑥) ∧ 𝑏 ∈ (ℝ ↑m 𝑥)) → if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 13 | 12 | mpoeq3ia 7419 | . . . . 5 ⊢ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))) = (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 14 | 13 | mpteq2i 5182 | . . . 4 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 15 | 1, 2, 3, 4, 14 | vonioo 46720 | . . 3 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵)) |
| 16 | 14 | fveq1i 6818 | . . . . 5 ⊢ ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋) = ((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋) |
| 17 | 16 | oveqi 7354 | . . . 4 ⊢ (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑗 ∈ 𝑥 (vol‘((𝑎‘𝑗)[,)(𝑏‘𝑗))))))‘𝑋)𝐵) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 19 | 15, 18 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵)) |
| 20 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 21 | vonn0ioo.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 22 | 20, 1, 21, 2, 3 | hoidmvn0val 46622 | . 2 ⊢ (𝜑 → (𝐴((𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))))‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 23 | 19, 22 | eqtrd 2766 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 ifcif 4470 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ↑m cmap 8745 Xcixp 8816 Fincfn 8864 ℝcr 11000 0cc0 11001 (,)cioo 13240 [,)cico 13242 ∏cprod 15805 volcvol 25386 volncvoln 46576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-prod 15806 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-pws 17348 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-drng 20641 df-field 20642 df-abv 20719 df-staf 20749 df-srng 20750 df-lmod 20790 df-lss 20860 df-lmhm 20951 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-refld 21537 df-phl 21558 df-dsmm 21664 df-frlm 21679 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cn 23137 df-cnp 23138 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-xms 24230 df-ms 24231 df-tms 24232 df-nm 24492 df-ngp 24493 df-tng 24494 df-nrg 24495 df-nlm 24496 df-cncf 24793 df-clm 24985 df-cph 25090 df-tcph 25091 df-rrx 25307 df-ovol 25387 df-vol 25388 df-salg 46347 df-sumge0 46401 df-mea 46488 df-ome 46528 df-caragen 46530 df-ovoln 46575 df-voln 46577 |
| This theorem is referenced by: vonn0ioo2 46728 |
| Copyright terms: Public domain | W3C validator |