Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem8 Structured version   Visualization version   GIF version

Theorem ftc1anclem8 37707
Description: Lemma for ftc1anc 37708. (Contributed by Brendan Leahy, 29-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem8 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < 𝑦)
Distinct variable groups:   𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦,𝐴   𝐵,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝑓,𝐹,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝜑,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝑓,𝐺,𝑔,𝑟,𝑢,𝑤,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem8
StepHypRef Expression
1 ftc1anc.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1anc.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1anc.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1anc.le . . 3 (𝜑𝐴𝐵)
5 ftc1anc.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1anc.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1anc.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1anc.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1anclem7 37706 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2)))
10 simplll 775 . . . 4 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)))
11 3simpa 1149 . . . 4 ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤) → (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)))
12 ioossre 13448 . . . . . . . . 9 (𝑢(,)𝑤) ⊆ ℝ
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑢(,)𝑤) ⊆ ℝ)
14 rembl 25575 . . . . . . . . 9 ℝ ∈ dom vol
1514a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ dom vol)
16 fvex 6919 . . . . . . . . . 10 (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ V
17 c0ex 11255 . . . . . . . . . 10 0 ∈ V
1816, 17ifex 4576 . . . . . . . . 9 if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V
1918a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V)
20 eldifn 4132 . . . . . . . . . 10 (𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤)) → ¬ 𝑡 ∈ (𝑢(,)𝑤))
2120adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤))) → ¬ 𝑡 ∈ (𝑢(,)𝑤))
2221iffalsed 4536 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
23 iftrue 4531 . . . . . . . . . . . 12 (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
2423mpteq2ia 5245 . . . . . . . . . . 11 (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
25 resmpt 6055 . . . . . . . . . . . 12 ((𝑢(,)𝑤) ⊆ ℝ → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
2612, 25ax-mp 5 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
2724, 26eqtr4i 2768 . . . . . . . . . 10 (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ (𝑢(,)𝑤))
28 i1ff 25711 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
2928ffvelcdmda 7104 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
3029recnd 11289 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
31 ax-icn 11214 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
32 i1ff 25711 . . . . . . . . . . . . . . . . . . 19 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
3332ffvelcdmda 7104 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
3433recnd 11289 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
35 mulcl 11239 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
3631, 34, 35sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
37 addcl 11237 . . . . . . . . . . . . . . . 16 (((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
3830, 36, 37syl2an 596 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
3938anandirs 679 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
40 reex 11246 . . . . . . . . . . . . . . . 16 ℝ ∈ V
4140a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ℝ ∈ V)
4229adantlr 715 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
4336adantll 714 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
4428feqmptd 6977 . . . . . . . . . . . . . . . 16 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
4544adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
4640a1i 11 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ dom ∫1 → ℝ ∈ V)
4731a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → i ∈ ℂ)
48 fconstmpt 5747 . . . . . . . . . . . . . . . . . 18 (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)
4948a1i 11 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ dom ∫1 → (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i))
5032feqmptd 6977 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ dom ∫1𝑔 = (𝑡 ∈ ℝ ↦ (𝑔𝑡)))
5146, 47, 33, 49, 50offval2 7717 . . . . . . . . . . . . . . . 16 (𝑔 ∈ dom ∫1 → ((ℝ × {i}) ∘f · 𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔𝑡))))
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((ℝ × {i}) ∘f · 𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔𝑡))))
5341, 42, 43, 45, 52offval2 7717 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓f + ((ℝ × {i}) ∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓𝑡) + (i · (𝑔𝑡)))))
54 absf 15376 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → abs:ℂ⟶ℝ)
5655feqmptd 6977 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
57 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = ((𝑓𝑡) + (i · (𝑔𝑡))) → (abs‘𝑥) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
5839, 53, 56, 57fmptco 7149 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
59 ftc1anclem3 37702 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ∈ dom ∫1)
6058, 59eqeltrrd 2842 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ dom ∫1)
61 i1fmbf 25710 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ MblFn)
6260, 61syl 17 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ MblFn)
63 ioombl 25600 . . . . . . . . . . 11 (𝑢(,)𝑤) ∈ dom vol
64 mbfres 25679 . . . . . . . . . . 11 (((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ MblFn ∧ (𝑢(,)𝑤) ∈ dom vol) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn)
6562, 63, 64sylancl 586 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn)
6627, 65eqeltrid 2845 . . . . . . . . 9 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
6766adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
6813, 15, 19, 22, 67mbfss 25681 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
6968adantr 480 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
7039abscld 15475 . . . . . . . . . 10 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ)
7139absge0d 15483 . . . . . . . . . 10 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
72 elrege0 13494 . . . . . . . . . 10 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,)+∞) ↔ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
7370, 71, 72sylanbrc 583 . . . . . . . . 9 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,)+∞))
74 0e0icopnf 13498 . . . . . . . . 9 0 ∈ (0[,)+∞)
75 ifcl 4571 . . . . . . . . 9 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,)+∞))
7673, 74, 75sylancl 586 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,)+∞))
7776fmpttd 7135 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,)+∞))
7877ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,)+∞))
7970rexrd 11311 . . . . . . . . . . 11 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ*)
80 elxrge0 13497 . . . . . . . . . . 11 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞) ↔ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
8179, 71, 80sylanbrc 583 . . . . . . . . . 10 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞))
82 0e0iccpnf 13499 . . . . . . . . . 10 0 ∈ (0[,]+∞)
83 ifcl 4571 . . . . . . . . . 10 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
8481, 82, 83sylancl 586 . . . . . . . . 9 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
8584fmpttd 7135 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞))
8685ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞))
87 ifcl 4571 . . . . . . . . . . 11 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
8881, 82, 87sylancl 586 . . . . . . . . . 10 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
8988fmpttd 7135 . . . . . . . . 9 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞))
90 ffn 6736 . . . . . . . . . . . . . . 15 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
91 frn 6743 . . . . . . . . . . . . . . . 16 (𝑓:ℝ⟶ℝ → ran 𝑓 ⊆ ℝ)
92 ax-resscn 11212 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
9391, 92sstrdi 3996 . . . . . . . . . . . . . . 15 (𝑓:ℝ⟶ℝ → ran 𝑓 ⊆ ℂ)
94 ffn 6736 . . . . . . . . . . . . . . . . 17 (abs:ℂ⟶ℝ → abs Fn ℂ)
9554, 94ax-mp 5 . . . . . . . . . . . . . . . 16 abs Fn ℂ
96 fnco 6686 . . . . . . . . . . . . . . . 16 ((abs Fn ℂ ∧ 𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ) → (abs ∘ 𝑓) Fn ℝ)
9795, 96mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ) → (abs ∘ 𝑓) Fn ℝ)
9890, 93, 97syl2anc 584 . . . . . . . . . . . . . 14 (𝑓:ℝ⟶ℝ → (abs ∘ 𝑓) Fn ℝ)
9928, 98syl 17 . . . . . . . . . . . . 13 (𝑓 ∈ dom ∫1 → (abs ∘ 𝑓) Fn ℝ)
10099adantr 480 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ 𝑓) Fn ℝ)
101 ffn 6736 . . . . . . . . . . . . . . 15 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
102 frn 6743 . . . . . . . . . . . . . . . 16 (𝑔:ℝ⟶ℝ → ran 𝑔 ⊆ ℝ)
103102, 92sstrdi 3996 . . . . . . . . . . . . . . 15 (𝑔:ℝ⟶ℝ → ran 𝑔 ⊆ ℂ)
104 fnco 6686 . . . . . . . . . . . . . . . 16 ((abs Fn ℂ ∧ 𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ) → (abs ∘ 𝑔) Fn ℝ)
10595, 104mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ) → (abs ∘ 𝑔) Fn ℝ)
106101, 103, 105syl2anc 584 . . . . . . . . . . . . . 14 (𝑔:ℝ⟶ℝ → (abs ∘ 𝑔) Fn ℝ)
10732, 106syl 17 . . . . . . . . . . . . 13 (𝑔 ∈ dom ∫1 → (abs ∘ 𝑔) Fn ℝ)
108107adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ 𝑔) Fn ℝ)
109 inidm 4227 . . . . . . . . . . . 12 (ℝ ∩ ℝ) = ℝ
11028adantr 480 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
111 fvco3 7008 . . . . . . . . . . . . 13 ((𝑓:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓𝑡)))
112110, 111sylan 580 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓𝑡)))
11332adantl 481 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔:ℝ⟶ℝ)
114 fvco3 7008 . . . . . . . . . . . . 13 ((𝑔:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔𝑡)))
115113, 114sylan 580 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔𝑡)))
116100, 108, 41, 41, 109, 112, 115offval 7706 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))
11730addridd 11461 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → ((𝑓𝑡) + 0) = (𝑓𝑡))
118117mpteq2dva 5242 . . . . . . . . . . . . . . . 16 (𝑓 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ ((𝑓𝑡) + 0)) = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
11940a1i 11 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 → ℝ ∈ V)
12017a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ∈ V)
12131a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → i ∈ ℂ)
12248a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i))
123 fconstmpt 5747 . . . . . . . . . . . . . . . . . . . 20 (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)
124123a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0))
125119, 121, 120, 122, 124offval2 7717 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → ((ℝ × {i}) ∘f · (ℝ × {0})) = (𝑡 ∈ ℝ ↦ (i · 0)))
126 it0e0 12488 . . . . . . . . . . . . . . . . . . 19 (i · 0) = 0
127126mpteq2i 5247 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ℝ ↦ (i · 0)) = (𝑡 ∈ ℝ ↦ 0)
128125, 127eqtrdi 2793 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 → ((ℝ × {i}) ∘f · (ℝ × {0})) = (𝑡 ∈ ℝ ↦ 0))
129119, 29, 120, 44, 128offval2 7717 . . . . . . . . . . . . . . . 16 (𝑓 ∈ dom ∫1 → (𝑓f + ((ℝ × {i}) ∘f · (ℝ × {0}))) = (𝑡 ∈ ℝ ↦ ((𝑓𝑡) + 0)))
130118, 129, 443eqtr4d 2787 . . . . . . . . . . . . . . 15 (𝑓 ∈ dom ∫1 → (𝑓f + ((ℝ × {i}) ∘f · (ℝ × {0}))) = 𝑓)
131130coeq2d 5873 . . . . . . . . . . . . . 14 (𝑓 ∈ dom ∫1 → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · (ℝ × {0})))) = (abs ∘ 𝑓))
132 i1f0 25722 . . . . . . . . . . . . . . 15 (ℝ × {0}) ∈ dom ∫1
133 ftc1anclem3 37702 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1 ∧ (ℝ × {0}) ∈ dom ∫1) → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · (ℝ × {0})))) ∈ dom ∫1)
134132, 133mpan2 691 . . . . . . . . . . . . . 14 (𝑓 ∈ dom ∫1 → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · (ℝ × {0})))) ∈ dom ∫1)
135131, 134eqeltrrd 2842 . . . . . . . . . . . . 13 (𝑓 ∈ dom ∫1 → (abs ∘ 𝑓) ∈ dom ∫1)
136135adantr 480 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ 𝑓) ∈ dom ∫1)
137 coeq2 5869 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (abs ∘ 𝑓) = (abs ∘ 𝑔))
138137eleq1d 2826 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((abs ∘ 𝑓) ∈ dom ∫1 ↔ (abs ∘ 𝑔) ∈ dom ∫1))
139138, 135vtoclga 3577 . . . . . . . . . . . . 13 (𝑔 ∈ dom ∫1 → (abs ∘ 𝑔) ∈ dom ∫1)
140139adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ 𝑔) ∈ dom ∫1)
141136, 140i1fadd 25730 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) ∈ dom ∫1)
142116, 141eqeltrrd 2842 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ∈ dom ∫1)
14330abscld 15475 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ∈ ℝ)
14430absge0d 15483 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝑓𝑡)))
145 elrege0 13494 . . . . . . . . . . . . . . . 16 ((abs‘(𝑓𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝑓𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑓𝑡))))
146143, 144, 145sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ∈ (0[,)+∞))
14734abscld 15475 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ ℝ)
14834absge0d 15483 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝑔𝑡)))
149 elrege0 13494 . . . . . . . . . . . . . . . 16 ((abs‘(𝑔𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝑔𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑔𝑡))))
150147, 148, 149sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ (0[,)+∞))
151 ge0addcl 13500 . . . . . . . . . . . . . . 15 (((abs‘(𝑓𝑡)) ∈ (0[,)+∞) ∧ (abs‘(𝑔𝑡)) ∈ (0[,)+∞)) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ (0[,)+∞))
152146, 150, 151syl2an 596 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ (0[,)+∞))
153152anandirs 679 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ (0[,)+∞))
154153fmpttd 7135 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,)+∞))
155 0plef 25707 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,)+∞) ↔ ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))))
156154, 155sylib 218 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))))
157156simprd 495 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))
158 itg2itg1 25771 . . . . . . . . . . 11 (((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) = (∫1‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))))
159 itg1cl 25720 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ∈ dom ∫1 → (∫1‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) ∈ ℝ)
160159adantr 480 . . . . . . . . . . 11 (((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) → (∫1‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) ∈ ℝ)
161158, 160eqeltrd 2841 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) ∈ ℝ)
162142, 157, 161syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) ∈ ℝ)
163 icossicc 13476 . . . . . . . . . . 11 (0[,)+∞) ⊆ (0[,]+∞)
164 fss 6752 . . . . . . . . . . 11 (((𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,]+∞))
165154, 163, 164sylancl 586 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,]+∞))
166 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
167 ifcl 4571 . . . . . . . . . . . . . 14 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ ℝ)
16870, 166, 167sylancl 586 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ ℝ)
169 readdcl 11238 . . . . . . . . . . . . . . 15 (((abs‘(𝑓𝑡)) ∈ ℝ ∧ (abs‘(𝑔𝑡)) ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
170143, 147, 169syl2an 596 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
171170anandirs 679 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
17270leidd 11829 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
173 breq1 5146 . . . . . . . . . . . . . . 15 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) = if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ↔ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
174 breq1 5146 . . . . . . . . . . . . . . 15 (0 = if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ↔ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
175173, 174ifboth 4565 . . . . . . . . . . . . . 14 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∧ 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
176172, 71, 175syl2anc 584 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
177 abstri 15369 . . . . . . . . . . . . . . . 16 (((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
17830, 36, 177syl2an 596 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
179178anandirs 679 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
180 absmul 15333 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (abs‘(i · (𝑔𝑡))) = ((abs‘i) · (abs‘(𝑔𝑡))))
18131, 34, 180sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = ((abs‘i) · (abs‘(𝑔𝑡))))
182 absi 15325 . . . . . . . . . . . . . . . . . . 19 (abs‘i) = 1
183182oveq1i 7441 . . . . . . . . . . . . . . . . . 18 ((abs‘i) · (abs‘(𝑔𝑡))) = (1 · (abs‘(𝑔𝑡)))
184181, 183eqtrdi 2793 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (1 · (abs‘(𝑔𝑡))))
185147recnd 11289 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ ℂ)
186185mullidd 11279 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (1 · (abs‘(𝑔𝑡))) = (abs‘(𝑔𝑡)))
187184, 186eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (abs‘(𝑔𝑡)))
188187adantll 714 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (abs‘(𝑔𝑡)))
189188oveq2d 7447 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))) = ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
190179, 189breqtrd 5169 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
191168, 70, 171, 176, 190letrd 11418 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
192191ralrimiva 3146 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ∀𝑡 ∈ ℝ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
193 eqidd 2738 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
194 eqidd 2738 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))
19541, 168, 171, 193, 194ofrfval2 7718 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))) ↔ ∀𝑡 ∈ ℝ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))
196192, 195mpbird 257 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))
197 itg2le 25774 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))))
19889, 165, 196, 197syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))))
199 itg2lecl 25773 . . . . . . . . 9 (((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
20089, 162, 198, 199syl3anc 1373 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
201200ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
20289ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞))
203 breq1 5146 . . . . . . . . . . 11 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
204 breq1 5146 . . . . . . . . . . 11 (0 = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
205 elioore 13417 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ)
206205, 172sylan2 593 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
207206adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
208207adantlr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
2092rexrd 11311 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
2103rexrd 11311 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
211209, 210jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
212 df-icc 13394 . . . . . . . . . . . . . . . . . . . . 21 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥𝑡𝑡𝑦)})
213212elixx3g 13400 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑢 ∈ ℝ*) ∧ (𝐴𝑢𝑢𝐵)))
214213simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴[,]𝐵) → (𝐴𝑢𝑢𝐵))
215214simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐴[,]𝐵) → 𝐴𝑢)
216212elixx3g 13400 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝑤𝑤𝐵)))
217216simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴[,]𝐵) → (𝐴𝑤𝑤𝐵))
218217simprd 495 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴[,]𝐵) → 𝑤𝐵)
219215, 218anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴𝑢𝑤𝐵))
220 ioossioo 13481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑢𝑤𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵))
221211, 219, 220syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵))
2225adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷)
223221, 222sstrd 3994 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷)
224223sselda 3983 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡𝐷)
225 iftrue 4531 . . . . . . . . . . . . . 14 (𝑡𝐷 → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
226224, 225syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
227226adantllr 719 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
228208, 227breqtrrd 5171 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
229 breq2 5147 . . . . . . . . . . . . 13 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) = if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ↔ 0 ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
230 breq2 5147 . . . . . . . . . . . . 13 (0 = if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
2316sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝐷) → 𝑡 ∈ ℝ)
232231adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → 𝑡 ∈ ℝ)
23371adantll 714 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
234232, 233syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
235 0le0 12367 . . . . . . . . . . . . . 14 0 ≤ 0
236235a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ¬ 𝑡𝐷) → 0 ≤ 0)
237229, 230, 234, 236ifbothda 4564 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → 0 ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
238237ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
239203, 204, 228, 238ifbothda 4564 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
240239ralrimivw 3150 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
24140a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ V)
24218a1i 11 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V)
24316, 17ifex 4576 . . . . . . . . . . . 12 if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V
244243a1i 11 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V)
245 eqidd 2738 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
246 eqidd 2738 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
247241, 242, 244, 245, 246ofrfval2 7718 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
248247ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
249240, 248mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
250 itg2le 25774 . . . . . . . 8 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))))
25186, 202, 249, 250syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))))
252 itg2lecl 25773 . . . . . . 7 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
25386, 201, 251, 252syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
2548ffvelcdmda 7104 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
255254adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
256224, 255syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹𝑡) ∈ ℂ)
257256adantllr 719 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹𝑡) ∈ ℂ)
258205, 39sylan2 593 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
259258adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
260259adantlr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
261257, 260subcld 11620 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
262261abscld 15475 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ)
263261absge0d 15483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
264 elrege0 13494 . . . . . . . . . 10 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,)+∞) ↔ ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ ∧ 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
265262, 263, 264sylanbrc 583 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,)+∞))
26674a1i 11 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈ (0[,)+∞))
267265, 266ifclda 4561 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,)+∞))
268267adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,)+∞))
269268fmpttd 7135 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,)+∞))
270262rexrd 11311 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
271 elxrge0 13497 . . . . . . . . . . 11 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
272270, 263, 271sylanbrc 583 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞))
27382a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈ (0[,]+∞))
274272, 273ifclda 4561 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
275274adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
276275fmpttd 7135 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞))
277 recncf 24928 . . . . . . . . . . . . 13 ℜ ∈ (ℂ–cn→ℝ)
278 prid1g 4760 . . . . . . . . . . . . 13 (ℜ ∈ (ℂ–cn→ℝ) → ℜ ∈ {ℜ, ℑ})
279277, 278ax-mp 5 . . . . . . . . . . . 12 ℜ ∈ {ℜ, ℑ}
280 ftc1anclem2 37701 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℜ ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
281279, 280mp3an3 1452 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
2828, 7, 281syl2anc 584 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) ∈ ℝ)
283 imcncf 24929 . . . . . . . . . . . . 13 ℑ ∈ (ℂ–cn→ℝ)
284 prid2g 4761 . . . . . . . . . . . . 13 (ℑ ∈ (ℂ–cn→ℝ) → ℑ ∈ {ℜ, ℑ})
285283, 284ax-mp 5 . . . . . . . . . . . 12 ℑ ∈ {ℜ, ℑ}
286 ftc1anclem2 37701 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℑ ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
287285, 286mp3an3 1452 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
2888, 7, 287syl2anc 584 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
289282, 288readdcld 11290 . . . . . . . . 9 (𝜑 → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ∈ ℝ)
290289ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ∈ ℝ)
291201, 290readdcld 11290 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) ∈ ℝ)
292 ge0addcl 13500 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
293292adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
294 ifcl 4571 . . . . . . . . . . . . . . 15 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈ (0[,)+∞)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,)+∞))
29573, 74, 294sylancl 586 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,)+∞))
296295fmpttd 7135 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,)+∞))
297296adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,)+∞))
298292adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
299254recld 15233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐷) → (ℜ‘(𝐹𝑡)) ∈ ℝ)
300299recnd 11289 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝐷) → (ℜ‘(𝐹𝑡)) ∈ ℂ)
301300abscld 15475 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝐷) → (abs‘(ℜ‘(𝐹𝑡))) ∈ ℝ)
302300absge0d 15483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝐷) → 0 ≤ (abs‘(ℜ‘(𝐹𝑡))))
303 elrege0 13494 . . . . . . . . . . . . . . . . . 18 ((abs‘(ℜ‘(𝐹𝑡))) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘(𝐹𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐹𝑡)))))
304301, 302, 303sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐷) → (abs‘(ℜ‘(𝐹𝑡))) ∈ (0[,)+∞))
30574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ (0[,)+∞))
306304, 305ifclda 4561 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) ∈ (0[,)+∞))
307306adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) ∈ (0[,)+∞))
308307fmpttd 7135 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)):ℝ⟶(0[,)+∞))
309254imcld 15234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐷) → (ℑ‘(𝐹𝑡)) ∈ ℝ)
310309recnd 11289 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝐷) → (ℑ‘(𝐹𝑡)) ∈ ℂ)
311310abscld 15475 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝐷) → (abs‘(ℑ‘(𝐹𝑡))) ∈ ℝ)
312310absge0d 15483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝐷) → 0 ≤ (abs‘(ℑ‘(𝐹𝑡))))
313 elrege0 13494 . . . . . . . . . . . . . . . . . 18 ((abs‘(ℑ‘(𝐹𝑡))) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘(𝐹𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐹𝑡)))))
314311, 312, 313sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐷) → (abs‘(ℑ‘(𝐹𝑡))) ∈ (0[,)+∞))
315314, 305ifclda 4561 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) ∈ (0[,)+∞))
316315adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) ∈ (0[,)+∞))
317316fmpttd 7135 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)):ℝ⟶(0[,)+∞))
318298, 308, 317, 241, 241, 109off 7715 . . . . . . . . . . . . 13 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))):ℝ⟶(0[,)+∞))
319318adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))):ℝ⟶(0[,)+∞))
32040a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ V)
321293, 297, 319, 320, 320, 109off 7715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,)+∞))
322 fss 6752 . . . . . . . . . . 11 ((((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,]+∞))
323321, 163, 322sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,]+∞))
324323adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,]+∞))
325 0xr 11308 . . . . . . . . . . . . . 14 0 ∈ ℝ*
326325a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈ ℝ*)
327270, 326ifclda 4561 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ ℝ*)
328254adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
32939adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
330232, 329syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
331328, 330subcld 11620 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
332331abscld 15475 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ)
333332rexrd 11311 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
334325a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ¬ 𝑡𝐷) → 0 ∈ ℝ*)
335333, 334ifclda 4561 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ ℝ*)
336335adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ ℝ*)
337330abscld 15475 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ)
338 0red 11264 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ¬ 𝑡𝐷) → 0 ∈ ℝ)
339337, 338ifclda 4561 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ ℝ)
340 0red 11264 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℝ)
341301, 340ifclda 4561 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) ∈ ℝ)
342311, 340ifclda 4561 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) ∈ ℝ)
343341, 342readdcld 11290 . . . . . . . . . . . . . . . 16 (𝜑 → (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) ∈ ℝ)
344343adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) ∈ ℝ)
345339, 344readdcld 11290 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ)
346345rexrd 11311 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ*)
347346adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ ℝ*)
348 breq1 5146 . . . . . . . . . . . . 13 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
349 breq1 5146 . . . . . . . . . . . . 13 (0 = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → (0 ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
350224adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡𝐷)
351332leidd 11829 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
352351adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
353 iftrue 4531 . . . . . . . . . . . . . . . 16 (𝑡𝐷 → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
354353adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
355352, 354breqtrrd 5171 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
356350, 355syldan 591 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
357 breq2 5147 . . . . . . . . . . . . . . 15 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → (0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ↔ 0 ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
358 breq2 5147 . . . . . . . . . . . . . . 15 (0 = if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
359331absge0d 15483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
360357, 358, 359, 236ifbothda 4564 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → 0 ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
361360ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
362348, 349, 356, 361ifbothda 4564 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
363254negcld 11607 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝐷) → -(𝐹𝑡) ∈ ℂ)
364363adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → -(𝐹𝑡) ∈ ℂ)
365330, 364addcld 11280 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡)) ∈ ℂ)
366365abscld 15475 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡))) ∈ ℝ)
367363abscld 15475 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐷) → (abs‘-(𝐹𝑡)) ∈ ℝ)
368367adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘-(𝐹𝑡)) ∈ ℝ)
369337, 368readdcld 11290 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘-(𝐹𝑡))) ∈ ℝ)
370301, 311readdcld 11290 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐷) → ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))) ∈ ℝ)
371370adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))) ∈ ℝ)
372337, 371readdcld 11290 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))) ∈ ℝ)
373330, 364abstrid 15495 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡))) ≤ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘-(𝐹𝑡))))
374 mulcl 11239 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ (ℑ‘(𝐹𝑡)) ∈ ℂ) → (i · (ℑ‘(𝐹𝑡))) ∈ ℂ)
37531, 310, 374sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝐷) → (i · (ℑ‘(𝐹𝑡))) ∈ ℂ)
376300, 375abstrid 15495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝐷) → (abs‘((ℜ‘(𝐹𝑡)) + (i · (ℑ‘(𝐹𝑡))))) ≤ ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(i · (ℑ‘(𝐹𝑡))))))
377254absnegd 15488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝐷) → (abs‘-(𝐹𝑡)) = (abs‘(𝐹𝑡)))
378254replimd 15236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → (𝐹𝑡) = ((ℜ‘(𝐹𝑡)) + (i · (ℑ‘(𝐹𝑡)))))
379378fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝐷) → (abs‘(𝐹𝑡)) = (abs‘((ℜ‘(𝐹𝑡)) + (i · (ℑ‘(𝐹𝑡))))))
380377, 379eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝐷) → (abs‘-(𝐹𝑡)) = (abs‘((ℜ‘(𝐹𝑡)) + (i · (ℑ‘(𝐹𝑡))))))
381 absmul 15333 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((i ∈ ℂ ∧ (ℑ‘(𝐹𝑡)) ∈ ℂ) → (abs‘(i · (ℑ‘(𝐹𝑡)))) = ((abs‘i) · (abs‘(ℑ‘(𝐹𝑡)))))
38231, 310, 381sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡𝐷) → (abs‘(i · (ℑ‘(𝐹𝑡)))) = ((abs‘i) · (abs‘(ℑ‘(𝐹𝑡)))))
383182oveq1i 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((abs‘i) · (abs‘(ℑ‘(𝐹𝑡)))) = (1 · (abs‘(ℑ‘(𝐹𝑡))))
384382, 383eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → (abs‘(i · (ℑ‘(𝐹𝑡)))) = (1 · (abs‘(ℑ‘(𝐹𝑡)))))
385311recnd 11289 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡𝐷) → (abs‘(ℑ‘(𝐹𝑡))) ∈ ℂ)
386385mullidd 11279 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → (1 · (abs‘(ℑ‘(𝐹𝑡)))) = (abs‘(ℑ‘(𝐹𝑡))))
387384, 386eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝐷) → (abs‘(ℑ‘(𝐹𝑡))) = (abs‘(i · (ℑ‘(𝐹𝑡)))))
388387oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝐷) → ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))) = ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(i · (ℑ‘(𝐹𝑡))))))
389376, 380, 3883brtr4d 5175 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐷) → (abs‘-(𝐹𝑡)) ≤ ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))))
390389adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘-(𝐹𝑡)) ≤ ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))))
391368, 371, 337, 390leadd2dd 11878 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘-(𝐹𝑡))) ≤ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))))
392366, 369, 372, 373, 391letrd 11418 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡))) ≤ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))))
393328, 330abssubd 15492 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) − (𝐹𝑡))))
394353adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
395330, 328negsubd 11626 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡)) = (((𝑓𝑡) + (i · (𝑔𝑡))) − (𝐹𝑡)))
396395fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡))) = (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) − (𝐹𝑡))))
397393, 394, 3963eqtr4d 2787 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = (abs‘(((𝑓𝑡) + (i · (𝑔𝑡))) + -(𝐹𝑡))))
398 iftrue 4531 . . . . . . . . . . . . . . . . . 18 (𝑡𝐷 → if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))))
399398adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))))
400392, 397, 3993brtr4d 5175 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0))
401400ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡𝐷 → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0)))
402235a1i 11 . . . . . . . . . . . . . . . 16 𝑡𝐷 → 0 ≤ 0)
403 iffalse 4534 . . . . . . . . . . . . . . . 16 𝑡𝐷 → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = 0)
404 iffalse 4534 . . . . . . . . . . . . . . . 16 𝑡𝐷 → if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0) = 0)
405402, 403, 4043brtr4d 5175 . . . . . . . . . . . . . . 15 𝑡𝐷 → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0))
406401, 405pm2.61d1 180 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0))
407 iftrue 4531 . . . . . . . . . . . . . . . . . 18 (𝑡𝐷 → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) = (abs‘(ℜ‘(𝐹𝑡))))
408 iftrue 4531 . . . . . . . . . . . . . . . . . 18 (𝑡𝐷 → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) = (abs‘(ℑ‘(𝐹𝑡))))
409407, 408oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡𝐷 → (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) = ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡)))))
410225, 409oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑡𝐷 → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))))
411410, 398eqtr4d 2780 . . . . . . . . . . . . . . 15 (𝑡𝐷 → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0))
412 00id 11436 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
413412oveq2i 7442 . . . . . . . . . . . . . . . . 17 (0 + (0 + 0)) = (0 + 0)
414413, 412eqtri 2765 . . . . . . . . . . . . . . . 16 (0 + (0 + 0)) = 0
415 iffalse 4534 . . . . . . . . . . . . . . . . 17 𝑡𝐷 → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
416 iffalse 4534 . . . . . . . . . . . . . . . . . 18 𝑡𝐷 → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) = 0)
417 iffalse 4534 . . . . . . . . . . . . . . . . . 18 𝑡𝐷 → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) = 0)
418416, 417oveq12d 7449 . . . . . . . . . . . . . . . . 17 𝑡𝐷 → (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) = (0 + 0))
419415, 418oveq12d 7449 . . . . . . . . . . . . . . . 16 𝑡𝐷 → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = (0 + (0 + 0)))
420414, 419, 4043eqtr4a 2803 . . . . . . . . . . . . . . 15 𝑡𝐷 → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0))
421411, 420pm2.61i 182 . . . . . . . . . . . . . 14 (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = if(𝑡𝐷, ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + ((abs‘(ℜ‘(𝐹𝑡))) + (abs‘(ℑ‘(𝐹𝑡))))), 0)
422406, 421breqtrrdi 5185 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))
423422adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡𝐷, (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))
424327, 336, 347, 362, 423xrletrd 13204 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))
425424ralrimivw 3150 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))
426 fvex 6919 . . . . . . . . . . . . . 14 (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ V
427426, 17ifex 4576 . . . . . . . . . . . . 13 if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ V
428427a1i 11 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ V)
429 ovexd 7466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) ∈ V)
430 eqidd 2738 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
431 ovexd 7466 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ) → (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) ∈ V)
432341adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) ∈ ℝ)
433342adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0) ∈ ℝ)
434 eqidd 2738 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)))
435 eqidd 2738 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))
436241, 432, 433, 434, 435offval2 7717 . . . . . . . . . . . . 13 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))
437241, 244, 431, 246, 436offval2 7717 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) = (𝑡 ∈ ℝ ↦ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
438241, 428, 429, 430, 437ofrfval2 7718 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
439438ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + (if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0) + if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
440425, 439mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
441 itg2le 25774 . . . . . . . . 9 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞) ∧ ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
442276, 324, 440, 441syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
4436adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → 𝐷 ⊆ ℝ)
444243a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V)
445 eldifn 4132 . . . . . . . . . . . . . 14 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
446445iffalsed 4536 . . . . . . . . . . . . 13 (𝑡 ∈ (ℝ ∖ 𝐷) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
447446adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
448 ovexd 7466 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ V)
44941, 42, 448, 45, 52offval2 7717 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓f + ((ℝ × {i}) ∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓𝑡) + (i · (𝑔𝑡)))))
45039, 449, 56, 57fmptco 7149 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
451450reseq1d 5996 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ 𝐷))
4526resmptd 6058 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))) ↾ 𝐷) = (𝑡𝐷 ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
453451, 452sylan9eqr 2799 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡𝐷 ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
454225mpteq2ia 5245 . . . . . . . . . . . . . 14 (𝑡𝐷 ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡𝐷 ↦ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
455453, 454eqtr4di 2795 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡𝐷 ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
456 i1fmbf 25710 . . . . . . . . . . . . . . 15 ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ∈ dom ∫1 → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ∈ MblFn)
45759, 456syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ∈ MblFn)
4588fdmd 6746 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝐷)
459 iblmbf 25802 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
460 mbfdm 25661 . . . . . . . . . . . . . . . 16 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
4617, 459, 4603syl 18 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 ∈ dom vol)
462458, 461eqeltrrd 2842 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ dom vol)
463 mbfres 25679 . . . . . . . . . . . . . 14 (((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ∈ MblFn ∧ 𝐷 ∈ dom vol) → ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn)
464457, 462, 463syl2anr 597 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((abs ∘ (𝑓f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn)
465455, 464eqeltrrd 2842 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡𝐷 ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
466443, 15, 444, 447, 465mbfss 25681 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ MblFn)
467200adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
468 0cnd 11254 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
469300, 468ifclda 4561 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) ∈ ℂ)
470469adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) ∈ ℂ)
471 eqidd 2738 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)))
47254a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → abs:ℂ⟶ℝ)
473472feqmptd 6977 . . . . . . . . . . . . . . . 16 (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
474 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑥 = if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) → (abs‘𝑥) = (abs‘if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)))
475 fvif 6922 . . . . . . . . . . . . . . . . . 18 (abs‘if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) = if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), (abs‘0))
476 abs0 15324 . . . . . . . . . . . . . . . . . . 19 (abs‘0) = 0
477 ifeq2 4530 . . . . . . . . . . . . . . . . . . 19 ((abs‘0) = 0 → if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), (abs‘0)) = if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))
478476, 477ax-mp 5 . . . . . . . . . . . . . . . . . 18 if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), (abs‘0)) = if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)
479475, 478eqtri 2765 . . . . . . . . . . . . . . . . 17 (abs‘if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) = if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)
480474, 479eqtrdi 2793 . . . . . . . . . . . . . . . 16 (𝑥 = if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) → (abs‘𝑥) = if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))
481470, 471, 473, 480fmptco 7149 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)))
482299, 340ifclda 4561 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) ∈ ℝ)
483482adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) ∈ ℝ)
484483fmpttd 7135 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)):ℝ⟶ℝ)
48514a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ∈ dom vol)
486482adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐷) → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) ∈ ℝ)
487445adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
488487iffalsed 4536 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) = 0)
489 iftrue 4531 . . . . . . . . . . . . . . . . . . 19 (𝑡𝐷 → if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0) = (ℜ‘(𝐹𝑡)))
490489mpteq2ia 5245 . . . . . . . . . . . . . . . . . 18 (𝑡𝐷 ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) = (𝑡𝐷 ↦ (ℜ‘(𝐹𝑡)))
4918feqmptd 6977 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
4927, 459syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ MblFn)
493491, 492eqeltrrd 2842 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ MblFn)
494254ismbfcn2 25673 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑡𝐷 ↦ (𝐹𝑡)) ∈ MblFn ↔ ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)))
495493, 494mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
496495simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn)
497490, 496eqeltrid 2845 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡𝐷 ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) ∈ MblFn)
4986, 485, 486, 488, 497mbfss 25681 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) ∈ MblFn)
499 ftc1anclem1 37700 . . . . . . . . . . . . . . . 16 (((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0)) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0))) ∈ MblFn)
500484, 498, 499syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (ℜ‘(𝐹𝑡)), 0))) ∈ MblFn)
501481, 500eqeltrrd 2842 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∈ MblFn)
502501, 308, 282, 317, 288itg2addnc 37681 . . . . . . . . . . . . 13 (𝜑 → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
503502, 289eqeltrd 2841 . . . . . . . . . . . 12 (𝜑 → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ∈ ℝ)
504503adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) ∈ ℝ)
505466, 297, 467, 319, 504itg2addnc 37681 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
506502adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))
507506oveq2d 7447 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
508505, 507eqtrd 2777 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
509508adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
510442, 509breqtrd 5169 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))))
511 itg2lecl 25773 . . . . . . 7 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℜ‘(𝐹𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐷, (abs‘(ℑ‘(𝐹𝑡))), 0)))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ)
512276, 291, 510, 511syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ)
51369, 78, 253, 269, 512itg2addnc 37681 . . . . 5 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))))
514241, 242, 428, 245, 430offval2 7717 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))))
515 eqeq2 2749 . . . . . . . . . . 11 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)))
516 eqeq2 2749 . . . . . . . . . . 11 (0 = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = 0 ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)))
517 iftrue 4531 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
51823, 517oveq12d 7449 . . . . . . . . . . . 12 (𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
519518adantl 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
520 iffalse 4534 . . . . . . . . . . . . . 14 𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
521 iffalse 4534 . . . . . . . . . . . . . 14 𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) = 0)
522520, 521oveq12d 7449 . . . . . . . . . . . . 13 𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = (0 + 0))
523522, 412eqtrdi 2793 . . . . . . . . . . . 12 𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = 0)
524523adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = 0)
525515, 516, 519, 524ifbothda 4564 . . . . . . . . . 10 (𝜑 → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0))
526525mpteq2dv 5244 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)))
527514, 526eqtrd 2777 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)))
528527ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)))
529 simplr 769 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1))
530258abscld 15475 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ)
531530recnd 11289 . . . . . . . . . . 11 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
532529, 531sylan 580 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
533262recnd 11289 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℂ)
534532, 533addcomd 11463 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) = ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
535534ifeq1da 4557 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
536535mpteq2dv 5244 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) + (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
537528, 536eqtrd 2777 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
538537fveq2d 6910 . . . . 5 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))))
539513, 538eqtr3d 2779 . . . 4 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))))
54010, 11, 539syl2an 596 . . 3 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))))
541540adantr 480 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) = (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))))
542 rpcn 13045 . . . 4 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
5435422halvesd 12512 . . 3 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
544543ad3antlr 731 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
5459, 541, 5443brtr3d 5174 1 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  wss 3951  ifcif 4525  {csn 4626  {cpr 4628   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696  supcsup 9480  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  [,)cico 13389  [,]cicc 13390  cre 15136  cim 15137  abscabs 15273  cnccncf 24902  volcvol 25498  MblFncmbf 25649  1citg1 25650  2citg2 25651  𝐿1cibl 25652  citg 25653  0𝑝c0p 25704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-0p 25705
This theorem is referenced by:  ftc1anc  37708
  Copyright terms: Public domain W3C validator