Proof of Theorem ftc1anclem8
Step | Hyp | Ref
| Expression |
1 | | ftc1anc.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
2 | | ftc1anc.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | | ftc1anc.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | | ftc1anc.le |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
5 | | ftc1anc.s |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
6 | | ftc1anc.d |
. . 3
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
7 | | ftc1anc.i |
. . 3
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
8 | | ftc1anc.f |
. . 3
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ftc1anclem7 35856 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) |
10 | | simplll 772 |
. . . 4
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
11 | | 3simpa 1147 |
. . . 4
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) |
12 | | ioossre 13140 |
. . . . . . . . 9
⊢ (𝑢(,)𝑤) ⊆ ℝ |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑢(,)𝑤) ⊆
ℝ) |
14 | | rembl 24704 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
15 | 14 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ dom vol) |
16 | | fvex 6787 |
. . . . . . . . . 10
⊢
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ V |
17 | | c0ex 10969 |
. . . . . . . . . 10
⊢ 0 ∈
V |
18 | 16, 17 | ifex 4509 |
. . . . . . . . 9
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
20 | | eldifn 4062 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤)) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) |
22 | 21 | iffalsed 4470 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
23 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
24 | 23 | mpteq2ia 5177 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
25 | | resmpt 5945 |
. . . . . . . . . . . 12
⊢ ((𝑢(,)𝑤) ⊆ ℝ → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
26 | 12, 25 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
27 | 24, 26 | eqtr4i 2769 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) |
28 | | i1ff 24840 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
29 | 28 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
30 | 29 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
31 | | ax-icn 10930 |
. . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ |
32 | | i1ff 24840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
33 | 32 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
34 | 33 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
35 | | mulcl 10955 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
36 | 31, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
37 | | addcl 10953 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
38 | 30, 36, 37 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
39 | 38 | anandirs 676 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
40 | | reex 10962 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ∈ V) |
42 | 29 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑓‘𝑡) ∈ ℝ) |
43 | 36 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
44 | 28 | feqmptd 6837 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
= (𝑡 ∈ ℝ ↦
(𝑓‘𝑡))) |
46 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) |
47 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) |
48 | | fconstmpt 5649 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℝ
× {i}) = (𝑡 ∈
ℝ ↦ i) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) |
50 | 32 | feqmptd 6837 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑡 ∈ ℝ ↦ (𝑔‘𝑡))) |
51 | 46, 47, 33, 49, 50 | offval2 7553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · 𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔‘𝑡)))) |
52 | 51 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {i}) ∘f ·
𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔‘𝑡)))) |
53 | 41, 42, 43, 45, 52 | offval2 7553 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
54 | | absf 15049 |
. . . . . . . . . . . . . . . 16
⊢
abs:ℂ⟶ℝ |
55 | 54 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
56 | 55 | feqmptd 6837 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
57 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) → (abs‘𝑥) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
58 | 39, 53, 56, 57 | fmptco 7001 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
59 | | ftc1anclem3 35852 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ∈ dom
∫1) |
60 | 58, 59 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom
∫1) |
61 | | i1fmbf 24839 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom ∫1 →
(𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) |
63 | | ioombl 24729 |
. . . . . . . . . . 11
⊢ (𝑢(,)𝑤) ∈ dom vol |
64 | | mbfres 24808 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn ∧ (𝑢(,)𝑤) ∈ dom vol) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) |
65 | 62, 63, 64 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) |
66 | 27, 65 | eqeltrid 2843 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
67 | 66 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
68 | 13, 15, 19, 22, 67 | mbfss 24810 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
69 | 68 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
70 | 39 | abscld 15148 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
71 | 39 | absge0d 15156 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
72 | | elrege0 13186 |
. . . . . . . . . 10
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
73 | 70, 71, 72 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞)) |
74 | | 0e0icopnf 13190 |
. . . . . . . . 9
⊢ 0 ∈
(0[,)+∞) |
75 | | ifcl 4504 |
. . . . . . . . 9
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
76 | 73, 74, 75 | sylancl 586 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
77 | 76 | fmpttd 6989 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
78 | 77 | ad2antlr 724 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
79 | 70 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈
ℝ*) |
80 | | elxrge0 13189 |
. . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
81 | 79, 71, 80 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞)) |
82 | | 0e0iccpnf 13191 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]+∞) |
83 | | ifcl 4504 |
. . . . . . . . . 10
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
84 | 81, 82, 83 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
85 | 84 | fmpttd 6989 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
86 | 85 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
87 | | ifcl 4504 |
. . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
88 | 81, 82, 87 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
89 | 88 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
90 | | ffn 6600 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
91 | | frn 6607 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℝ) |
92 | | ax-resscn 10928 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℂ |
93 | 91, 92 | sstrdi 3933 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℂ) |
94 | | ffn 6600 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
95 | 54, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ abs Fn
ℂ |
96 | | fnco 6549 |
. . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑓 Fn ℝ
∧ ran 𝑓 ⊆
ℂ) → (abs ∘ 𝑓) Fn ℝ) |
97 | 95, 96 | mp3an1 1447 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ) → (abs
∘ 𝑓) Fn
ℝ) |
98 | 90, 93, 97 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℝ⟶ℝ →
(abs ∘ 𝑓) Fn
ℝ) |
99 | 28, 98 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓) Fn
ℝ) |
100 | 99 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) Fn ℝ) |
101 | | ffn 6600 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
𝑔 Fn
ℝ) |
102 | | frn 6607 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℝ) |
103 | 102, 92 | sstrdi 3933 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℂ) |
104 | | fnco 6549 |
. . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑔 Fn ℝ
∧ ran 𝑔 ⊆
ℂ) → (abs ∘ 𝑔) Fn ℝ) |
105 | 95, 104 | mp3an1 1447 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ) → (abs
∘ 𝑔) Fn
ℝ) |
106 | 101, 103,
105 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑔:ℝ⟶ℝ →
(abs ∘ 𝑔) Fn
ℝ) |
107 | 32, 106 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔) Fn
ℝ) |
108 | 107 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) Fn ℝ) |
109 | | inidm 4152 |
. . . . . . . . . . . 12
⊢ (ℝ
∩ ℝ) = ℝ |
110 | 28 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓:ℝ⟶ℝ) |
111 | | fvco3 6867 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) |
112 | 110, 111 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) |
113 | 32 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔:ℝ⟶ℝ) |
114 | | fvco3 6867 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) |
115 | 113, 114 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) |
116 | 100, 108,
41, 41, 109, 112, 115 | offval 7542 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
117 | 30 | addid1d 11175 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + 0) = (𝑓‘𝑡)) |
118 | 117 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ ((𝑓‘𝑡) + 0)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
119 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ℝ ∈ V) |
120 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ∈ V) |
121 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) |
122 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) |
123 | | fconstmpt 5649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) |
124 | 123 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) |
125 | 119, 121,
120, 122, 124 | offval2 7553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · (ℝ ×
{0})) = (𝑡 ∈ ℝ
↦ (i · 0))) |
126 | | it0e0 12195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (i
· 0) = 0 |
127 | 126 | mpteq2i 5179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ ℝ ↦ (i
· 0)) = (𝑡 ∈
ℝ ↦ 0) |
128 | 125, 127 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · (ℝ ×
{0})) = (𝑡 ∈ ℝ
↦ 0)) |
129 | 119, 29, 120, 44, 128 | offval2 7553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0}))) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + 0))) |
130 | 118, 129,
44 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0}))) = 𝑓) |
131 | 130 | coeq2d 5771 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0})))) = (abs ∘ 𝑓)) |
132 | | i1f0 24851 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
× {0}) ∈ dom ∫1 |
133 | | ftc1anclem3 35852 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ (ℝ × {0}) ∈ dom ∫1) → (abs ∘
(𝑓 ∘f +
((ℝ × {i}) ∘f · (ℝ × {0}))))
∈ dom ∫1) |
134 | 132, 133 | mpan2 688 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0})))) ∈ dom ∫1) |
135 | 131, 134 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓)
∈ dom ∫1) |
136 | 135 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) ∈ dom
∫1) |
137 | | coeq2 5767 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (abs ∘ 𝑓) = (abs ∘ 𝑔)) |
138 | 137 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((abs ∘ 𝑓) ∈ dom ∫1 ↔ (abs
∘ 𝑔) ∈ dom
∫1)) |
139 | 138, 135 | vtoclga 3513 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔)
∈ dom ∫1) |
140 | 139 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) ∈ dom
∫1) |
141 | 136, 140 | i1fadd 24859 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) ∈ dom
∫1) |
142 | 116, 141 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom
∫1) |
143 | 30 | abscld 15148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ ℝ) |
144 | 30 | absge0d 15156 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑓‘𝑡))) |
145 | | elrege0 13186 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑓‘𝑡)))) |
146 | 143, 144,
145 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ (0[,)+∞)) |
147 | 34 | abscld 15148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℝ) |
148 | 34 | absge0d 15156 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑔‘𝑡))) |
149 | | elrege0 13186 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑔‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑔‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑔‘𝑡)))) |
150 | 147, 148,
149 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) |
151 | | ge0addcl 13192 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ∧
(abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) →
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
152 | 146, 150,
151 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
153 | 152 | anandirs 676 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
154 | 153 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
155 | | 0plef 24836 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ↔
((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
156 | 154, 155 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
157 | 156 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
158 | | itg2itg1 24901 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) = (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
159 | | itg1cl 24849 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
160 | 159 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
161 | 158, 160 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
162 | 142, 157,
161 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
163 | | icossicc 13168 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
164 | | fss 6617 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) |
165 | 154, 163,
164 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) |
166 | | 0re 10977 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
167 | | ifcl 4504 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
168 | 70, 166, 167 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
169 | | readdcl 10954 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ (abs‘(𝑔‘𝑡)) ∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
170 | 143, 147,
169 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
171 | 170 | anandirs 676 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
172 | 70 | leidd 11541 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
173 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
174 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
175 | 173, 174 | ifboth 4498 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∧ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
176 | 172, 71, 175 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
177 | | abstri 15042 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
178 | 30, 36, 177 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
179 | 178 | anandirs 676 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
180 | | absmul 15006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (abs‘(i
· (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
181 | 31, 34, 180 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
182 | | absi 14998 |
. . . . . . . . . . . . . . . . . . 19
⊢
(abs‘i) = 1 |
183 | 182 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘i) · (abs‘(𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡))) |
184 | 181, 183 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡)))) |
185 | 147 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℂ) |
186 | 185 | mulid2d 10993 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (1 · (abs‘(𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
187 | 184, 186 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
188 | 187 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
189 | 188 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡)))) = ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
190 | 179, 189 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
191 | 168, 70, 171, 176, 190 | letrd 11132 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
192 | 191 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
193 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
194 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
195 | 41, 168, 171, 193, 194 | ofrfval2 7554 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
196 | 192, 195 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
197 | | itg2le 24904 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
198 | 89, 165, 196, 197 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
199 | | itg2lecl 24903 |
. . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
200 | 89, 162, 198, 199 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
201 | 200 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
202 | 89 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
203 | | breq1 5077 |
. . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
204 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
205 | | elioore 13109 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ) |
206 | 205, 172 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
207 | 206 | adantll 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
208 | 207 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
209 | 2 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
210 | 3 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
211 | 209, 210 | jca 512 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
212 | | df-icc 13086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦)}) |
213 | 212 | elixx3g 13092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑢 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵))) |
214 | 213 | simprbi 497 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵)) |
215 | 214 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (𝐴[,]𝐵) → 𝐴 ≤ 𝑢) |
216 | 212 | elixx3g 13092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵))) |
217 | 216 | simprbi 497 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵)) |
218 | 217 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ≤ 𝐵) |
219 | 215, 218 | anim12i 613 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) |
220 | | ioossioo 13173 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
221 | 211, 219,
220 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
222 | 5 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷) |
223 | 221, 222 | sstrd 3931 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷) |
224 | 223 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
225 | | iftrue 4465 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
226 | 224, 225 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
227 | 226 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
228 | 208, 227 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
229 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
230 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
231 | 6 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
232 | 231 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
233 | 71 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
234 | 232, 233 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
235 | | 0le0 12074 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
236 | 235 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ≤
0) |
237 | 229, 230,
234, 236 | ifbothda 4497 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
238 | 237 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
239 | 203, 204,
228, 238 | ifbothda 4497 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
240 | 239 | ralrimivw 3104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
241 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) |
242 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
243 | 16, 17 | ifex 4509 |
. . . . . . . . . . . 12
⊢ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
244 | 243 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
245 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
246 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
247 | 241, 242,
244, 245, 246 | ofrfval2 7554 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
248 | 247 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
249 | 240, 248 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
250 | | itg2le 24904 |
. . . . . . . 8
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
251 | 86, 202, 249, 250 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
252 | | itg2lecl 24903 |
. . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
253 | 86, 201, 251, 252 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
254 | 8 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
255 | 254 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
256 | 224, 255 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
257 | 256 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
258 | 205, 39 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
259 | 258 | adantll 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
260 | 259 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
261 | 257, 260 | subcld 11332 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
262 | 261 | abscld 15148 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
263 | 261 | absge0d 15156 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
264 | | elrege0 13186 |
. . . . . . . . . 10
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
265 | 262, 263,
264 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞)) |
266 | 74 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,)+∞)) |
267 | 265, 266 | ifclda 4494 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) |
268 | 267 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) |
269 | 268 | fmpttd 6989 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,)+∞)) |
270 | 262 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
271 | | elxrge0 13189 |
. . . . . . . . . . 11
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
272 | 270, 263,
271 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
273 | 82 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
274 | 272, 273 | ifclda 4494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
275 | 274 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
276 | 275 | fmpttd 6989 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
277 | | recncf 24065 |
. . . . . . . . . . . . 13
⊢ ℜ
∈ (ℂ–cn→ℝ) |
278 | | prid1g 4696 |
. . . . . . . . . . . . 13
⊢ (ℜ
∈ (ℂ–cn→ℝ)
→ ℜ ∈ {ℜ, ℑ}) |
279 | 277, 278 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ℜ
∈ {ℜ, ℑ} |
280 | | ftc1anclem2 35851 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℜ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
281 | 279, 280 | mp3an3 1449 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
282 | 8, 7, 281 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
283 | | imcncf 24066 |
. . . . . . . . . . . . 13
⊢ ℑ
∈ (ℂ–cn→ℝ) |
284 | | prid2g 4697 |
. . . . . . . . . . . . 13
⊢ (ℑ
∈ (ℂ–cn→ℝ)
→ ℑ ∈ {ℜ, ℑ}) |
285 | 283, 284 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ℑ
∈ {ℜ, ℑ} |
286 | | ftc1anclem2 35851 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℑ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
287 | 285, 286 | mp3an3 1449 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
288 | 8, 7, 287 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
289 | 282, 288 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
290 | 289 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
291 | 201, 290 | readdcld 11004 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ) |
292 | | ge0addcl 13192 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
293 | 292 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
294 | | ifcl 4504 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
295 | 73, 74, 294 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
296 | 295 | fmpttd 6989 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
297 | 296 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
298 | 292 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 + 𝑦) ∈ (0[,)+∞)) |
299 | 254 | recld 14905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℝ) |
300 | 299 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℂ) |
301 | 300 | abscld 15148 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ) |
302 | 300 | absge0d 15156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡)))) |
303 | | elrege0 13186 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡))))) |
304 | 301, 302,
303 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) |
305 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
(0[,)+∞)) |
306 | 304, 305 | ifclda 4494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
307 | 306 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
308 | 307 | fmpttd 6989 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) |
309 | 254 | imcld 14906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℝ) |
310 | 309 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℂ) |
311 | 310 | abscld 15148 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ) |
312 | 310 | absge0d 15156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡)))) |
313 | | elrege0 13186 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡))))) |
314 | 311, 312,
313 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) |
315 | 314, 305 | ifclda 4494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
316 | 315 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
317 | 316 | fmpttd 6989 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) |
318 | 298, 308,
317, 241, 241, 109 | off 7551 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) |
319 | 318 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) |
320 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) |
321 | 293, 297,
319, 320, 320, 109 | off 7551 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,)+∞)) |
322 | | fss 6617 |
. . . . . . . . . . 11
⊢ ((((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
323 | 321, 163,
322 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
324 | 323 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
325 | | 0xr 11022 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
326 | 325 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
ℝ*) |
327 | 270, 326 | ifclda 4494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
328 | 254 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
329 | 39 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
330 | 232, 329 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
331 | 328, 330 | subcld 11332 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
332 | 331 | abscld 15148 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
333 | 332 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
334 | 325 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ*) |
335 | 333, 334 | ifclda 4494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
336 | 335 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
337 | 330 | abscld 15148 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
338 | | 0red 10978 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ) |
339 | 337, 338 | ifclda 4494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
340 | | 0red 10978 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℝ) |
341 | 301, 340 | ifclda 4494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
342 | 311, 340 | ifclda 4494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
343 | 341, 342 | readdcld 11004 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) |
344 | 343 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) |
345 | 339, 344 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
346 | 345 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) |
347 | 346 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) |
348 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
349 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
350 | 224 | adantllr 716 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
351 | 332 | leidd 11541 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
352 | 351 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
353 | | iftrue 4465 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
354 | 353 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
355 | 352, 354 | breqtrrd 5102 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
356 | 350, 355 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
357 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
358 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
359 | 331 | absge0d 15156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
360 | 357, 358,
359, 236 | ifbothda 4497 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
361 | 360 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
362 | 348, 349,
356, 361 | ifbothda 4497 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
363 | 254 | negcld 11319 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) |
364 | 363 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) |
365 | 330, 364 | addcld 10994 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) ∈ ℂ) |
366 | 365 | abscld 15148 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ∈ ℝ) |
367 | 363 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) |
368 | 367 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) |
369 | 337, 368 | readdcld 11004 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ∈ ℝ) |
370 | 301, 311 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) |
371 | 370 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) →
((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) |
372 | 337, 371 | readdcld 11004 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) ∈ ℝ) |
373 | 330, 364 | abstrid 15168 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡)))) |
374 | | mulcl 10955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (i ·
(ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
375 | 31, 310, 374 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (i · (ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
376 | 300, 375 | abstrid 15168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) |
377 | 254 | absnegd 15161 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘(𝐹‘𝑡))) |
378 | 254 | replimd 14908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) = ((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) |
379 | 378 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) |
380 | 377, 379 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) |
381 | | absmul 15006 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (abs‘(i
· (ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
382 | 31, 310, 381 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
383 | 182 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((abs‘i) · (abs‘(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) |
384 | 382, 383 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
385 | 311 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
386 | 385 | mulid2d 10993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
387 | 384, 386 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) = (abs‘(i ·
(ℑ‘(𝐹‘𝑡))))) |
388 | 387 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) |
389 | 376, 380,
388 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
390 | 389 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
391 | 368, 371,
337, 390 | leadd2dd 11590 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
392 | 366, 369,
372, 373, 391 | letrd 11132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
393 | 328, 330 | abssubd 15165 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) |
394 | 353 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
395 | 330, 328 | negsubd 11338 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) = (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡))) |
396 | 395 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) |
397 | 393, 394,
396 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)))) |
398 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
399 | 398 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
400 | 392, 397,
399 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
401 | 400 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0))) |
402 | 235 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → 0 ≤ 0) |
403 | | iffalse 4468 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) |
404 | | iffalse 4468 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = 0) |
405 | 402, 403,
404 | 3brtr4d 5106 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
406 | 401, 405 | pm2.61d1 180 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
407 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = (abs‘(ℜ‘(𝐹‘𝑡)))) |
408 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
409 | 407, 408 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
410 | 225, 409 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
411 | 410, 398 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
412 | | 00id 11150 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 0) =
0 |
413 | 412 | oveq2i 7286 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + (0 +
0)) = (0 + 0) |
414 | 413, 412 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢ (0 + (0 +
0)) = 0 |
415 | | iffalse 4468 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
416 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = 0) |
417 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = 0) |
418 | 416, 417 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (0 + 0)) |
419 | 415, 418 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (0 + (0 + 0))) |
420 | 414, 419,
404 | 3eqtr4a 2804 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
421 | 411, 420 | pm2.61i 182 |
. . . . . . . . . . . . . 14
⊢ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) |
422 | 406, 421 | breqtrrdi 5116 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
423 | 422 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
424 | 327, 336,
347, 362, 423 | xrletrd 12896 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
425 | 424 | ralrimivw 3104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
426 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V |
427 | 426, 17 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V |
428 | 427 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V) |
429 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ V) |
430 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
431 | | ovexd 7310 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ V) |
432 | 341 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
433 | 342 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
434 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) |
435 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) |
436 | 241, 432,
433, 434, 435 | offval2 7553 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
437 | 241, 244,
431, 246, 436 | offval2 7553 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
438 | 241, 428,
429, 430, 437 | ofrfval2 7554 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
439 | 438 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
440 | 425, 439 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
441 | | itg2le 24904 |
. . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,]+∞)
∧ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
442 | 276, 324,
440, 441 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
443 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 𝐷 ⊆
ℝ) |
444 | 243 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
445 | | eldifn 4062 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
446 | 445 | iffalsed 4470 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
447 | 446 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ 𝐷)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
448 | | ovexd 7310 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ V) |
449 | 41, 42, 448, 45, 52 | offval2 7553 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
450 | 39, 449, 56, 57 | fmptco 7001 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
451 | 450 | reseq1d 5890 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ↾ 𝐷) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷)) |
452 | 6 | resmptd 5948 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
453 | 451, 452 | sylan9eqr 2800 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
454 | 225 | mpteq2ia 5177 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
455 | 453, 454 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
456 | | i1fmbf 24839 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈
MblFn) |
457 | 59, 456 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ∈ MblFn) |
458 | 8 | fdmd 6611 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝐷) |
459 | | iblmbf 24932 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
460 | | mbfdm 24790 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
461 | 7, 459, 460 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
462 | 458, 461 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ dom vol) |
463 | | mbfres 24808 |
. . . . . . . . . . . . . 14
⊢ (((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈ MblFn ∧ 𝐷 ∈ dom vol) → ((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn) |
464 | 457, 462,
463 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn) |
465 | 455, 464 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
466 | 443, 15, 444, 447, 465 | mbfss 24810 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
467 | 200 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
468 | | 0cnd 10968 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
469 | 300, 468 | ifclda 4494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) |
470 | 469 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) |
471 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) |
472 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
473 | 472 | feqmptd 6837 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
474 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = (abs‘if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) |
475 | | fvif 6790 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) |
476 | | abs0 14997 |
. . . . . . . . . . . . . . . . . . 19
⊢
(abs‘0) = 0 |
477 | | ifeq2 4464 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘0) = 0 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
478 | 476, 477 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) |
479 | 475, 478 | eqtri 2766 |
. . . . . . . . . . . . . . . . 17
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) |
480 | 474, 479 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
481 | 470, 471,
473, 480 | fmptco 7001 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) |
482 | 299, 340 | ifclda 4494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
483 | 482 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
484 | 483 | fmpttd 6989 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)),
0)):ℝ⟶ℝ) |
485 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℝ ∈ dom
vol) |
486 | 482 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
487 | 445 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
488 | 487 | iffalsed 4470 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = 0) |
489 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = (ℜ‘(𝐹‘𝑡))) |
490 | 489 | mpteq2ia 5177 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) |
491 | 8 | feqmptd 6837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
492 | 7, 459 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 ∈ MblFn) |
493 | 491, 492 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn) |
494 | 254 | ismbfcn2 24802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn ↔ ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn))) |
495 | 493, 494 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) |
496 | 495 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) |
497 | 490, 496 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) |
498 | 6, 485, 486, 488, 497 | mbfss 24810 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) |
499 | | ftc1anclem1 35850 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) → (abs ∘
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) |
500 | 484, 498,
499 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) |
501 | 481, 500 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∈ MblFn) |
502 | 501, 308,
282, 317, 288 | itg2addnc 35831 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
503 | 502, 289 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
504 | 503 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
505 | 466, 297,
467, 319, 504 | itg2addnc 35831 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
506 | 502 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
507 | 506 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
508 | 505, 507 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
509 | 508 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
510 | 442, 509 | breqtrd 5100 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
511 | | itg2lecl 24903 |
. . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
512 | 276, 291,
510, 511 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
513 | 69, 78, 253, 269, 512 | itg2addnc 35831 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))))) |
514 | 241, 242,
428, 245, 430 | offval2 7553 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
515 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
516 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0 ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
517 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
518 | 23, 517 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
519 | 518 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
520 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
521 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) |
522 | 520, 521 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (0 + 0)) |
523 | 522, 412 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) |
524 | 523 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) |
525 | 515, 516,
519, 524 | ifbothda 4497 |
. . . . . . . . . 10
⊢ (𝜑 → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) |
526 | 525 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
527 | 514, 526 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
528 | 527 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
529 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1)) |
530 | 258 | abscld 15148 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
531 | 530 | recnd 11003 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
532 | 529, 531 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
533 | 262 | recnd 11003 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℂ) |
534 | 532, 533 | addcomd 11177 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
535 | 534 | ifeq1da 4490 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
536 | 535 | mpteq2dv 5176 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
537 | 528, 536 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
538 | 537 | fveq2d 6778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
539 | 513, 538 | eqtr3d 2780 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
540 | 10, 11, 539 | syl2an 596 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
541 | 540 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
542 | | rpcn 12740 |
. . . 4
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) |
543 | 542 | 2halvesd 12219 |
. . 3
⊢ (𝑦 ∈ ℝ+
→ ((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
544 | 543 | ad3antlr 728 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
545 | 9, 541, 544 | 3brtr3d 5105 |
1
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < 𝑦) |