Proof of Theorem ftc1anclem8
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ftc1anc.g | . . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | 
| 2 |  | ftc1anc.a | . . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 3 |  | ftc1anc.b | . . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 4 |  | ftc1anc.le | . . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| 5 |  | ftc1anc.s | . . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | 
| 6 |  | ftc1anc.d | . . 3
⊢ (𝜑 → 𝐷 ⊆ ℝ) | 
| 7 |  | ftc1anc.i | . . 3
⊢ (𝜑 → 𝐹 ∈
𝐿1) | 
| 8 |  | ftc1anc.f | . . 3
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ftc1anclem7 37706 | . 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) | 
| 10 |  | simplll 775 | . . . 4
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) | 
| 11 |  | 3simpa 1149 | . . . 4
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) | 
| 12 |  | ioossre 13448 | . . . . . . . . 9
⊢ (𝑢(,)𝑤) ⊆ ℝ | 
| 13 | 12 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑢(,)𝑤) ⊆
ℝ) | 
| 14 |  | rembl 25575 | . . . . . . . . 9
⊢ ℝ
∈ dom vol | 
| 15 | 14 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ dom vol) | 
| 16 |  | fvex 6919 | . . . . . . . . . 10
⊢
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ V | 
| 17 |  | c0ex 11255 | . . . . . . . . . 10
⊢ 0 ∈
V | 
| 18 | 16, 17 | ifex 4576 | . . . . . . . . 9
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V | 
| 19 | 18 | a1i 11 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) | 
| 20 |  | eldifn 4132 | . . . . . . . . . 10
⊢ (𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤)) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) | 
| 21 | 20 | adantl 481 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) | 
| 22 | 21 | iffalsed 4536 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) | 
| 23 |  | iftrue 4531 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 24 | 23 | mpteq2ia 5245 | . . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 25 |  | resmpt 6055 | . . . . . . . . . . . 12
⊢ ((𝑢(,)𝑤) ⊆ ℝ → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 26 | 12, 25 | ax-mp 5 | . . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 27 | 24, 26 | eqtr4i 2768 | . . . . . . . . . 10
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) | 
| 28 |  | i1ff 25711 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) | 
| 29 | 28 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) | 
| 30 | 29 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) | 
| 31 |  | ax-icn 11214 | . . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ | 
| 32 |  | i1ff 25711 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) | 
| 33 | 32 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) | 
| 34 | 33 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) | 
| 35 |  | mulcl 11239 | . . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) | 
| 36 | 31, 34, 35 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) | 
| 37 |  | addcl 11237 | . . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 38 | 30, 36, 37 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 39 | 38 | anandirs 679 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 40 |  | reex 11246 | . . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V | 
| 41 | 40 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ∈ V) | 
| 42 | 29 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑓‘𝑡) ∈ ℝ) | 
| 43 | 36 | adantll 714 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ ℂ) | 
| 44 | 28 | feqmptd 6977 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
= (𝑡 ∈ ℝ ↦
(𝑓‘𝑡))) | 
| 46 | 40 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) | 
| 47 | 31 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) | 
| 48 |  | fconstmpt 5747 | . . . . . . . . . . . . . . . . . 18
⊢ (ℝ
× {i}) = (𝑡 ∈
ℝ ↦ i) | 
| 49 | 48 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) | 
| 50 | 32 | feqmptd 6977 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑡 ∈ ℝ ↦ (𝑔‘𝑡))) | 
| 51 | 46, 47, 33, 49, 50 | offval2 7717 | . . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · 𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔‘𝑡)))) | 
| 52 | 51 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {i}) ∘f ·
𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔‘𝑡)))) | 
| 53 | 41, 42, 43, 45, 52 | offval2 7717 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 54 |  | absf 15376 | . . . . . . . . . . . . . . . 16
⊢
abs:ℂ⟶ℝ | 
| 55 | 54 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs:ℂ⟶ℝ) | 
| 56 | 55 | feqmptd 6977 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) | 
| 57 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) → (abs‘𝑥) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 58 | 39, 53, 56, 57 | fmptco 7149 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 59 |  | ftc1anclem3 37702 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ∈ dom
∫1) | 
| 60 | 58, 59 | eqeltrrd 2842 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom
∫1) | 
| 61 |  | i1fmbf 25710 | . . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom ∫1 →
(𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) | 
| 62 | 60, 61 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) | 
| 63 |  | ioombl 25600 | . . . . . . . . . . 11
⊢ (𝑢(,)𝑤) ∈ dom vol | 
| 64 |  | mbfres 25679 | . . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn ∧ (𝑢(,)𝑤) ∈ dom vol) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) | 
| 65 | 62, 63, 64 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) | 
| 66 | 27, 65 | eqeltrid 2845 | . . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 67 | 66 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 68 | 13, 15, 19, 22, 67 | mbfss 25681 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 69 | 68 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 70 | 39 | abscld 15475 | . . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) | 
| 71 | 39 | absge0d 15483 | . . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 72 |  | elrege0 13494 | . . . . . . . . . 10
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 73 | 70, 71, 72 | sylanbrc 583 | . . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞)) | 
| 74 |  | 0e0icopnf 13498 | . . . . . . . . 9
⊢ 0 ∈
(0[,)+∞) | 
| 75 |  | ifcl 4571 | . . . . . . . . 9
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) | 
| 76 | 73, 74, 75 | sylancl 586 | . . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) | 
| 77 | 76 | fmpttd 7135 | . . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) | 
| 78 | 77 | ad2antlr 727 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) | 
| 79 | 70 | rexrd 11311 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈
ℝ*) | 
| 80 |  | elxrge0 13497 | . . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 81 | 79, 71, 80 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞)) | 
| 82 |  | 0e0iccpnf 13499 | . . . . . . . . . 10
⊢ 0 ∈
(0[,]+∞) | 
| 83 |  | ifcl 4571 | . . . . . . . . . 10
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) | 
| 84 | 81, 82, 83 | sylancl 586 | . . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) | 
| 85 | 84 | fmpttd 7135 | . . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) | 
| 86 | 85 | ad2antlr 727 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) | 
| 87 |  | ifcl 4571 | . . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) | 
| 88 | 81, 82, 87 | sylancl 586 | . . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) | 
| 89 | 88 | fmpttd 7135 | . . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) | 
| 90 |  | ffn 6736 | . . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) | 
| 91 |  | frn 6743 | . . . . . . . . . . . . . . . 16
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℝ) | 
| 92 |  | ax-resscn 11212 | . . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℂ | 
| 93 | 91, 92 | sstrdi 3996 | . . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℂ) | 
| 94 |  | ffn 6736 | . . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) | 
| 95 | 54, 94 | ax-mp 5 | . . . . . . . . . . . . . . . 16
⊢ abs Fn
ℂ | 
| 96 |  | fnco 6686 | . . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑓 Fn ℝ
∧ ran 𝑓 ⊆
ℂ) → (abs ∘ 𝑓) Fn ℝ) | 
| 97 | 95, 96 | mp3an1 1450 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ) → (abs
∘ 𝑓) Fn
ℝ) | 
| 98 | 90, 93, 97 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝑓:ℝ⟶ℝ →
(abs ∘ 𝑓) Fn
ℝ) | 
| 99 | 28, 98 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓) Fn
ℝ) | 
| 100 | 99 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) Fn ℝ) | 
| 101 |  | ffn 6736 | . . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
𝑔 Fn
ℝ) | 
| 102 |  | frn 6743 | . . . . . . . . . . . . . . . 16
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℝ) | 
| 103 | 102, 92 | sstrdi 3996 | . . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℂ) | 
| 104 |  | fnco 6686 | . . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑔 Fn ℝ
∧ ran 𝑔 ⊆
ℂ) → (abs ∘ 𝑔) Fn ℝ) | 
| 105 | 95, 104 | mp3an1 1450 | . . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ) → (abs
∘ 𝑔) Fn
ℝ) | 
| 106 | 101, 103,
105 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝑔:ℝ⟶ℝ →
(abs ∘ 𝑔) Fn
ℝ) | 
| 107 | 32, 106 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔) Fn
ℝ) | 
| 108 | 107 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) Fn ℝ) | 
| 109 |  | inidm 4227 | . . . . . . . . . . . 12
⊢ (ℝ
∩ ℝ) = ℝ | 
| 110 | 28 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓:ℝ⟶ℝ) | 
| 111 |  | fvco3 7008 | . . . . . . . . . . . . 13
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) | 
| 112 | 110, 111 | sylan 580 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) | 
| 113 | 32 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔:ℝ⟶ℝ) | 
| 114 |  | fvco3 7008 | . . . . . . . . . . . . 13
⊢ ((𝑔:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) | 
| 115 | 113, 114 | sylan 580 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) | 
| 116 | 100, 108,
41, 41, 109, 112, 115 | offval 7706 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) | 
| 117 | 30 | addridd 11461 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + 0) = (𝑓‘𝑡)) | 
| 118 | 117 | mpteq2dva 5242 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ ((𝑓‘𝑡) + 0)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) | 
| 119 | 40 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ℝ ∈ V) | 
| 120 | 17 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ∈ V) | 
| 121 | 31 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) | 
| 122 | 48 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) | 
| 123 |  | fconstmpt 5747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) | 
| 124 | 123 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) | 
| 125 | 119, 121,
120, 122, 124 | offval2 7717 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · (ℝ ×
{0})) = (𝑡 ∈ ℝ
↦ (i · 0))) | 
| 126 |  | it0e0 12488 | . . . . . . . . . . . . . . . . . . 19
⊢ (i
· 0) = 0 | 
| 127 | 126 | mpteq2i 5247 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ ℝ ↦ (i
· 0)) = (𝑡 ∈
ℝ ↦ 0) | 
| 128 | 125, 127 | eqtrdi 2793 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · (ℝ ×
{0})) = (𝑡 ∈ ℝ
↦ 0)) | 
| 129 | 119, 29, 120, 44, 128 | offval2 7717 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0}))) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + 0))) | 
| 130 | 118, 129,
44 | 3eqtr4d 2787 | . . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0}))) = 𝑓) | 
| 131 | 130 | coeq2d 5873 | . . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0})))) = (abs ∘ 𝑓)) | 
| 132 |  | i1f0 25722 | . . . . . . . . . . . . . . 15
⊢ (ℝ
× {0}) ∈ dom ∫1 | 
| 133 |  | ftc1anclem3 37702 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ (ℝ × {0}) ∈ dom ∫1) → (abs ∘
(𝑓 ∘f +
((ℝ × {i}) ∘f · (ℝ × {0}))))
∈ dom ∫1) | 
| 134 | 132, 133 | mpan2 691 | . . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f ·
(ℝ × {0})))) ∈ dom ∫1) | 
| 135 | 131, 134 | eqeltrrd 2842 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓)
∈ dom ∫1) | 
| 136 | 135 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) ∈ dom
∫1) | 
| 137 |  | coeq2 5869 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (abs ∘ 𝑓) = (abs ∘ 𝑔)) | 
| 138 | 137 | eleq1d 2826 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((abs ∘ 𝑓) ∈ dom ∫1 ↔ (abs
∘ 𝑔) ∈ dom
∫1)) | 
| 139 | 138, 135 | vtoclga 3577 | . . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔)
∈ dom ∫1) | 
| 140 | 139 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) ∈ dom
∫1) | 
| 141 | 136, 140 | i1fadd 25730 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘f + (abs ∘ 𝑔)) ∈ dom
∫1) | 
| 142 | 116, 141 | eqeltrrd 2842 | . . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom
∫1) | 
| 143 | 30 | abscld 15475 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ ℝ) | 
| 144 | 30 | absge0d 15483 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑓‘𝑡))) | 
| 145 |  | elrege0 13494 | . . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑓‘𝑡)))) | 
| 146 | 143, 144,
145 | sylanbrc 583 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ (0[,)+∞)) | 
| 147 | 34 | abscld 15475 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℝ) | 
| 148 | 34 | absge0d 15483 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑔‘𝑡))) | 
| 149 |  | elrege0 13494 | . . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑔‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑔‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑔‘𝑡)))) | 
| 150 | 147, 148,
149 | sylanbrc 583 | . . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) | 
| 151 |  | ge0addcl 13500 | . . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ∧
(abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) →
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) | 
| 152 | 146, 150,
151 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) | 
| 153 | 152 | anandirs 679 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) | 
| 154 | 153 | fmpttd 7135 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) | 
| 155 |  | 0plef 25707 | . . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ↔
((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) | 
| 156 | 154, 155 | sylib 218 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) | 
| 157 | 156 | simprd 495 | . . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) | 
| 158 |  | itg2itg1 25771 | . . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) = (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) | 
| 159 |  | itg1cl 25720 | . . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) | 
| 160 | 159 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) | 
| 161 | 158, 160 | eqeltrd 2841 | . . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) | 
| 162 | 142, 157,
161 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) | 
| 163 |  | icossicc 13476 | . . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ (0[,]+∞) | 
| 164 |  | fss 6752 | . . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) | 
| 165 | 154, 163,
164 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) | 
| 166 |  | 0re 11263 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ | 
| 167 |  | ifcl 4571 | . . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) | 
| 168 | 70, 166, 167 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) | 
| 169 |  | readdcl 11238 | . . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ (abs‘(𝑔‘𝑡)) ∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) | 
| 170 | 143, 147,
169 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) | 
| 171 | 170 | anandirs 679 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) | 
| 172 | 70 | leidd 11829 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 173 |  | breq1 5146 | . . . . . . . . . . . . . . 15
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 174 |  | breq1 5146 | . . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 175 | 173, 174 | ifboth 4565 | . . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∧ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 176 | 172, 71, 175 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 177 |  | abstri 15369 | . . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) | 
| 178 | 30, 36, 177 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) | 
| 179 | 178 | anandirs 679 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) | 
| 180 |  | absmul 15333 | . . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (abs‘(i
· (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) | 
| 181 | 31, 34, 180 | sylancr 587 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) | 
| 182 |  | absi 15325 | . . . . . . . . . . . . . . . . . . 19
⊢
(abs‘i) = 1 | 
| 183 | 182 | oveq1i 7441 | . . . . . . . . . . . . . . . . . 18
⊢
((abs‘i) · (abs‘(𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡))) | 
| 184 | 181, 183 | eqtrdi 2793 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡)))) | 
| 185 | 147 | recnd 11289 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℂ) | 
| 186 | 185 | mullidd 11279 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (1 · (abs‘(𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) | 
| 187 | 184, 186 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) | 
| 188 | 187 | adantll 714 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) | 
| 189 | 188 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡)))) = ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) | 
| 190 | 179, 189 | breqtrd 5169 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) | 
| 191 | 168, 70, 171, 176, 190 | letrd 11418 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) | 
| 192 | 191 | ralrimiva 3146 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) | 
| 193 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 194 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) | 
| 195 | 41, 168, 171, 193, 194 | ofrfval2 7718 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) | 
| 196 | 192, 195 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) | 
| 197 |  | itg2le 25774 | . . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) | 
| 198 | 89, 165, 196, 197 | syl3anc 1373 | . . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) | 
| 199 |  | itg2lecl 25773 | . . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 200 | 89, 162, 198, 199 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 201 | 200 | ad2antlr 727 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 202 | 89 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) | 
| 203 |  | breq1 5146 | . . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 204 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 205 |  | elioore 13417 | . . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ) | 
| 206 | 205, 172 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 207 | 206 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 208 | 207 | adantlr 715 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 209 | 2 | rexrd 11311 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
ℝ*) | 
| 210 | 3 | rexrd 11311 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 211 | 209, 210 | jca 511 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) | 
| 212 |  | df-icc 13394 | . . . . . . . . . . . . . . . . . . . . 21
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦)}) | 
| 213 | 212 | elixx3g 13400 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑢 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵))) | 
| 214 | 213 | simprbi 496 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵)) | 
| 215 | 214 | simpld 494 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (𝐴[,]𝐵) → 𝐴 ≤ 𝑢) | 
| 216 | 212 | elixx3g 13400 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵))) | 
| 217 | 216 | simprbi 496 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵)) | 
| 218 | 217 | simprd 495 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ≤ 𝐵) | 
| 219 | 215, 218 | anim12i 613 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) | 
| 220 |  | ioossioo 13481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) | 
| 221 | 211, 219,
220 | syl2an 596 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) | 
| 222 | 5 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷) | 
| 223 | 221, 222 | sstrd 3994 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷) | 
| 224 | 223 | sselda 3983 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) | 
| 225 |  | iftrue 4531 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 226 | 224, 225 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 227 | 226 | adantllr 719 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 228 | 208, 227 | breqtrrd 5171 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) | 
| 229 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 230 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 231 | 6 | sselda 3983 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) | 
| 232 | 231 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) | 
| 233 | 71 | adantll 714 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 234 | 232, 233 | syldan 591 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 235 |  | 0le0 12367 | . . . . . . . . . . . . . 14
⊢ 0 ≤
0 | 
| 236 | 235 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ≤
0) | 
| 237 | 229, 230,
234, 236 | ifbothda 4564 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) | 
| 238 | 237 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) | 
| 239 | 203, 204,
228, 238 | ifbothda 4564 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) | 
| 240 | 239 | ralrimivw 3150 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) | 
| 241 | 40 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) | 
| 242 | 18 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) | 
| 243 | 16, 17 | ifex 4576 | . . . . . . . . . . . 12
⊢ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V | 
| 244 | 243 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) | 
| 245 |  | eqidd 2738 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 246 |  | eqidd 2738 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 247 | 241, 242,
244, 245, 246 | ofrfval2 7718 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 248 | 247 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 249 | 240, 248 | mpbird 257 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 250 |  | itg2le 25774 | . . . . . . . 8
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘r ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) | 
| 251 | 86, 202, 249, 250 | syl3anc 1373 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) | 
| 252 |  | itg2lecl 25773 | . . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 253 | 86, 201, 251, 252 | syl3anc 1373 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 254 | 8 | ffvelcdmda 7104 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) | 
| 255 | 254 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) | 
| 256 | 224, 255 | syldan 591 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) | 
| 257 | 256 | adantllr 719 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) | 
| 258 | 205, 39 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 259 | 258 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 260 | 259 | adantlr 715 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 261 | 257, 260 | subcld 11620 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) | 
| 262 | 261 | abscld 15475 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) | 
| 263 | 261 | absge0d 15483 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 264 |  | elrege0 13494 | . . . . . . . . . 10
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) | 
| 265 | 262, 263,
264 | sylanbrc 583 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞)) | 
| 266 | 74 | a1i 11 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,)+∞)) | 
| 267 | 265, 266 | ifclda 4561 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) | 
| 268 | 267 | adantr 480 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) | 
| 269 | 268 | fmpttd 7135 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,)+∞)) | 
| 270 | 262 | rexrd 11311 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) | 
| 271 |  | elxrge0 13497 | . . . . . . . . . . 11
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) | 
| 272 | 270, 263,
271 | sylanbrc 583 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) | 
| 273 | 82 | a1i 11 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) | 
| 274 | 272, 273 | ifclda 4561 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) | 
| 275 | 274 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) | 
| 276 | 275 | fmpttd 7135 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) | 
| 277 |  | recncf 24928 | . . . . . . . . . . . . 13
⊢ ℜ
∈ (ℂ–cn→ℝ) | 
| 278 |  | prid1g 4760 | . . . . . . . . . . . . 13
⊢ (ℜ
∈ (ℂ–cn→ℝ)
→ ℜ ∈ {ℜ, ℑ}) | 
| 279 | 277, 278 | ax-mp 5 | . . . . . . . . . . . 12
⊢ ℜ
∈ {ℜ, ℑ} | 
| 280 |  | ftc1anclem2 37701 | . . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℜ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 281 | 279, 280 | mp3an3 1452 | . . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 282 | 8, 7, 281 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 283 |  | imcncf 24929 | . . . . . . . . . . . . 13
⊢ ℑ
∈ (ℂ–cn→ℝ) | 
| 284 |  | prid2g 4761 | . . . . . . . . . . . . 13
⊢ (ℑ
∈ (ℂ–cn→ℝ)
→ ℑ ∈ {ℜ, ℑ}) | 
| 285 | 283, 284 | ax-mp 5 | . . . . . . . . . . . 12
⊢ ℑ
∈ {ℜ, ℑ} | 
| 286 |  | ftc1anclem2 37701 | . . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℑ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 287 | 285, 286 | mp3an3 1452 | . . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 288 | 8, 7, 287 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 289 | 282, 288 | readdcld 11290 | . . . . . . . . 9
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) | 
| 290 | 289 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) | 
| 291 | 201, 290 | readdcld 11290 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ) | 
| 292 |  | ge0addcl 13500 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) | 
| 293 | 292 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | 
| 294 |  | ifcl 4571 | . . . . . . . . . . . . . . 15
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) | 
| 295 | 73, 74, 294 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) | 
| 296 | 295 | fmpttd 7135 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) | 
| 297 | 296 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) | 
| 298 | 292 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 + 𝑦) ∈ (0[,)+∞)) | 
| 299 | 254 | recld 15233 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℝ) | 
| 300 | 299 | recnd 11289 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℂ) | 
| 301 | 300 | abscld 15475 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ) | 
| 302 | 300 | absge0d 15483 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡)))) | 
| 303 |  | elrege0 13494 | . . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡))))) | 
| 304 | 301, 302,
303 | sylanbrc 583 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) | 
| 305 | 74 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
(0[,)+∞)) | 
| 306 | 304, 305 | ifclda 4561 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) | 
| 307 | 306 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) | 
| 308 | 307 | fmpttd 7135 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) | 
| 309 | 254 | imcld 15234 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℝ) | 
| 310 | 309 | recnd 11289 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℂ) | 
| 311 | 310 | abscld 15475 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ) | 
| 312 | 310 | absge0d 15483 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡)))) | 
| 313 |  | elrege0 13494 | . . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 314 | 311, 312,
313 | sylanbrc 583 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) | 
| 315 | 314, 305 | ifclda 4561 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) | 
| 316 | 315 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) | 
| 317 | 316 | fmpttd 7135 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) | 
| 318 | 298, 308,
317, 241, 241, 109 | off 7715 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) | 
| 319 | 318 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) | 
| 320 | 40 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) | 
| 321 | 293, 297,
319, 320, 320, 109 | off 7715 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,)+∞)) | 
| 322 |  | fss 6752 | . . . . . . . . . . 11
⊢ ((((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) | 
| 323 | 321, 163,
322 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) | 
| 324 | 323 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) | 
| 325 |  | 0xr 11308 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* | 
| 326 | 325 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
ℝ*) | 
| 327 | 270, 326 | ifclda 4561 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) | 
| 328 | 254 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) | 
| 329 | 39 | adantll 714 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 330 | 232, 329 | syldan 591 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) | 
| 331 | 328, 330 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) | 
| 332 | 331 | abscld 15475 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) | 
| 333 | 332 | rexrd 11311 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) | 
| 334 | 325 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ*) | 
| 335 | 333, 334 | ifclda 4561 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) | 
| 336 | 335 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) | 
| 337 | 330 | abscld 15475 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) | 
| 338 |  | 0red 11264 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ) | 
| 339 | 337, 338 | ifclda 4561 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) | 
| 340 |  | 0red 11264 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℝ) | 
| 341 | 301, 340 | ifclda 4561 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) | 
| 342 | 311, 340 | ifclda 4561 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) | 
| 343 | 341, 342 | readdcld 11290 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) | 
| 344 | 343 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) | 
| 345 | 339, 344 | readdcld 11290 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) | 
| 346 | 345 | rexrd 11311 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) | 
| 347 | 346 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) | 
| 348 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 349 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 350 | 224 | adantllr 719 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) | 
| 351 | 332 | leidd 11829 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 352 | 351 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 353 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 354 | 353 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 355 | 352, 354 | breqtrrd 5171 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 356 | 350, 355 | syldan 591 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 357 |  | breq2 5147 | . . . . . . . . . . . . . . 15
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 358 |  | breq2 5147 | . . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 359 | 331 | absge0d 15483 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 360 | 357, 358,
359, 236 | ifbothda 4564 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 361 | 360 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 362 | 348, 349,
356, 361 | ifbothda 4564 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 363 | 254 | negcld 11607 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) | 
| 364 | 363 | adantlr 715 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) | 
| 365 | 330, 364 | addcld 11280 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) ∈ ℂ) | 
| 366 | 365 | abscld 15475 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ∈ ℝ) | 
| 367 | 363 | abscld 15475 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) | 
| 368 | 367 | adantlr 715 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) | 
| 369 | 337, 368 | readdcld 11290 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ∈ ℝ) | 
| 370 | 301, 311 | readdcld 11290 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) | 
| 371 | 370 | adantlr 715 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) →
((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) | 
| 372 | 337, 371 | readdcld 11290 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) ∈ ℝ) | 
| 373 | 330, 364 | abstrid 15495 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡)))) | 
| 374 |  | mulcl 11239 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (i ·
(ℑ‘(𝐹‘𝑡))) ∈ ℂ) | 
| 375 | 31, 310, 374 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (i · (ℑ‘(𝐹‘𝑡))) ∈ ℂ) | 
| 376 | 300, 375 | abstrid 15495 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) | 
| 377 | 254 | absnegd 15488 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘(𝐹‘𝑡))) | 
| 378 | 254 | replimd 15236 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) = ((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) | 
| 379 | 378 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) | 
| 380 | 377, 379 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) | 
| 381 |  | absmul 15333 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (abs‘(i
· (ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 382 | 31, 310, 381 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 383 | 182 | oveq1i 7441 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((abs‘i) · (abs‘(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) | 
| 384 | 382, 383 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 385 | 311 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℂ) | 
| 386 | 385 | mullidd 11279 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) = (abs‘(ℑ‘(𝐹‘𝑡)))) | 
| 387 | 384, 386 | eqtr2d 2778 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) = (abs‘(i ·
(ℑ‘(𝐹‘𝑡))))) | 
| 388 | 387 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) | 
| 389 | 376, 380,
388 | 3brtr4d 5175 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 390 | 389 | adantlr 715 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 391 | 368, 371,
337, 390 | leadd2dd 11878 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) | 
| 392 | 366, 369,
372, 373, 391 | letrd 11418 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) | 
| 393 | 328, 330 | abssubd 15492 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) | 
| 394 | 353 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 395 | 330, 328 | negsubd 11626 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) = (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡))) | 
| 396 | 395 | fveq2d 6910 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) | 
| 397 | 393, 394,
396 | 3eqtr4d 2787 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)))) | 
| 398 |  | iftrue 4531 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) | 
| 399 | 398 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) | 
| 400 | 392, 397,
399 | 3brtr4d 5175 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) | 
| 401 | 400 | ex 412 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0))) | 
| 402 | 235 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → 0 ≤ 0) | 
| 403 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) | 
| 404 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = 0) | 
| 405 | 402, 403,
404 | 3brtr4d 5175 | . . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) | 
| 406 | 401, 405 | pm2.61d1 180 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) | 
| 407 |  | iftrue 4531 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = (abs‘(ℜ‘(𝐹‘𝑡)))) | 
| 408 |  | iftrue 4531 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = (abs‘(ℑ‘(𝐹‘𝑡)))) | 
| 409 | 407, 408 | oveq12d 7449 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) | 
| 410 | 225, 409 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) | 
| 411 | 410, 398 | eqtr4d 2780 | . . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) | 
| 412 |  | 00id 11436 | . . . . . . . . . . . . . . . . . 18
⊢ (0 + 0) =
0 | 
| 413 | 412 | oveq2i 7442 | . . . . . . . . . . . . . . . . 17
⊢ (0 + (0 +
0)) = (0 + 0) | 
| 414 | 413, 412 | eqtri 2765 | . . . . . . . . . . . . . . . 16
⊢ (0 + (0 +
0)) = 0 | 
| 415 |  | iffalse 4534 | . . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) | 
| 416 |  | iffalse 4534 | . . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = 0) | 
| 417 |  | iffalse 4534 | . . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = 0) | 
| 418 | 416, 417 | oveq12d 7449 | . . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (0 + 0)) | 
| 419 | 415, 418 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (0 + (0 + 0))) | 
| 420 | 414, 419,
404 | 3eqtr4a 2803 | . . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) | 
| 421 | 411, 420 | pm2.61i 182 | . . . . . . . . . . . . . 14
⊢ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) | 
| 422 | 406, 421 | breqtrrdi 5185 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) | 
| 423 | 422 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) | 
| 424 | 327, 336,
347, 362, 423 | xrletrd 13204 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) | 
| 425 | 424 | ralrimivw 3150 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) | 
| 426 |  | fvex 6919 | . . . . . . . . . . . . . 14
⊢
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V | 
| 427 | 426, 17 | ifex 4576 | . . . . . . . . . . . . 13
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V | 
| 428 | 427 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V) | 
| 429 |  | ovexd 7466 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ V) | 
| 430 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 431 |  | ovexd 7466 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ V) | 
| 432 | 341 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) | 
| 433 | 342 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) | 
| 434 |  | eqidd 2738 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) | 
| 435 |  | eqidd 2738 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) | 
| 436 | 241, 432,
433, 434, 435 | offval2 7717 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) | 
| 437 | 241, 244,
431, 246, 436 | offval2 7717 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 438 | 241, 428,
429, 430, 437 | ofrfval2 7718 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 439 | 438 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 440 | 425, 439 | mpbird 257 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 441 |  | itg2le 25774 | . . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,]+∞)
∧ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘r ≤ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 442 | 276, 324,
440, 441 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 443 | 6 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 𝐷 ⊆
ℝ) | 
| 444 | 243 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) | 
| 445 |  | eldifn 4132 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) | 
| 446 | 445 | iffalsed 4536 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) | 
| 447 | 446 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ 𝐷)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) | 
| 448 |  | ovexd 7466 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ V) | 
| 449 | 41, 42, 448, 45, 52 | offval2 7717 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 450 | 39, 449, 56, 57 | fmptco 7149 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 451 | 450 | reseq1d 5996 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ↾ 𝐷) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷)) | 
| 452 | 6 | resmptd 6058 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 453 | 451, 452 | sylan9eqr 2799 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 454 | 225 | mpteq2ia 5245 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) | 
| 455 | 453, 454 | eqtr4di 2795 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) | 
| 456 |  | i1fmbf 25710 | . . . . . . . . . . . . . . 15
⊢ ((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈ dom ∫1
→ (abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈
MblFn) | 
| 457 | 59, 456 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘f + ((ℝ × {i})
∘f · 𝑔))) ∈ MblFn) | 
| 458 | 8 | fdmd 6746 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝐷) | 
| 459 |  | iblmbf 25802 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) | 
| 460 |  | mbfdm 25661 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) | 
| 461 | 7, 459, 460 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 ∈ dom vol) | 
| 462 | 458, 461 | eqeltrrd 2842 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ dom vol) | 
| 463 |  | mbfres 25679 | . . . . . . . . . . . . . 14
⊢ (((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ∈ MblFn ∧ 𝐷 ∈ dom vol) → ((abs
∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn) | 
| 464 | 457, 462,
463 | syl2anr 597 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘f + ((ℝ × {i}) ∘f · 𝑔))) ↾ 𝐷) ∈ MblFn) | 
| 465 | 455, 464 | eqeltrrd 2842 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 466 | 443, 15, 444, 447, 465 | mbfss 25681 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) | 
| 467 | 200 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) | 
| 468 |  | 0cnd 11254 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) | 
| 469 | 300, 468 | ifclda 4561 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) | 
| 470 | 469 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) | 
| 471 |  | eqidd 2738 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) | 
| 472 | 54 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
abs:ℂ⟶ℝ) | 
| 473 | 472 | feqmptd 6977 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) | 
| 474 |  | fveq2 6906 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = (abs‘if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) | 
| 475 |  | fvif 6922 | . . . . . . . . . . . . . . . . . 18
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) | 
| 476 |  | abs0 15324 | . . . . . . . . . . . . . . . . . . 19
⊢
(abs‘0) = 0 | 
| 477 |  | ifeq2 4530 | . . . . . . . . . . . . . . . . . . 19
⊢
((abs‘0) = 0 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) | 
| 478 | 476, 477 | ax-mp 5 | . . . . . . . . . . . . . . . . . 18
⊢ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) | 
| 479 | 475, 478 | eqtri 2765 | . . . . . . . . . . . . . . . . 17
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) | 
| 480 | 474, 479 | eqtrdi 2793 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) | 
| 481 | 470, 471,
473, 480 | fmptco 7149 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) | 
| 482 | 299, 340 | ifclda 4561 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) | 
| 483 | 482 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) | 
| 484 | 483 | fmpttd 7135 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)),
0)):ℝ⟶ℝ) | 
| 485 | 14 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℝ ∈ dom
vol) | 
| 486 | 482 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) | 
| 487 | 445 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) | 
| 488 | 487 | iffalsed 4536 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = 0) | 
| 489 |  | iftrue 4531 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = (ℜ‘(𝐹‘𝑡))) | 
| 490 | 489 | mpteq2ia 5245 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) | 
| 491 | 8 | feqmptd 6977 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) | 
| 492 | 7, 459 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| 493 | 491, 492 | eqeltrrd 2842 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn) | 
| 494 | 254 | ismbfcn2 25673 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn ↔ ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn))) | 
| 495 | 493, 494 | mpbid 232 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) | 
| 496 | 495 | simpld 494 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) | 
| 497 | 490, 496 | eqeltrid 2845 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) | 
| 498 | 6, 485, 486, 488, 497 | mbfss 25681 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) | 
| 499 |  | ftc1anclem1 37700 | . . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) → (abs ∘
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) | 
| 500 | 484, 498,
499 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) | 
| 501 | 481, 500 | eqeltrrd 2842 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∈ MblFn) | 
| 502 | 501, 308,
282, 317, 288 | itg2addnc 37681 | . . . . . . . . . . . . 13
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 503 | 502, 289 | eqeltrd 2841 | . . . . . . . . . . . 12
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) | 
| 504 | 503 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) | 
| 505 | 466, 297,
467, 319, 504 | itg2addnc 37681 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 506 | 502 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) | 
| 507 | 506 | oveq2d 7447 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 508 | 505, 507 | eqtrd 2777 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 509 | 508 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 510 | 442, 509 | breqtrd 5169 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) | 
| 511 |  | itg2lecl 25773 | . . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) | 
| 512 | 276, 291,
510, 511 | syl3anc 1373 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) | 
| 513 | 69, 78, 253, 269, 512 | itg2addnc 37681 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))))) | 
| 514 | 241, 242,
428, 245, 430 | offval2 7717 | . . . . . . . . 9
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) | 
| 515 |  | eqeq2 2749 | . . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) | 
| 516 |  | eqeq2 2749 | . . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0 ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) | 
| 517 |  | iftrue 4531 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 518 | 23, 517 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) | 
| 519 | 518 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) | 
| 520 |  | iffalse 4534 | . . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) | 
| 521 |  | iffalse 4534 | . . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) | 
| 522 | 520, 521 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (0 + 0)) | 
| 523 | 522, 412 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) | 
| 524 | 523 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) | 
| 525 | 515, 516,
519, 524 | ifbothda 4564 | . . . . . . . . . 10
⊢ (𝜑 → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) | 
| 526 | 525 | mpteq2dv 5244 | . . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) | 
| 527 | 514, 526 | eqtrd 2777 | . . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) | 
| 528 | 527 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) | 
| 529 |  | simplr 769 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1)) | 
| 530 | 258 | abscld 15475 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) | 
| 531 | 530 | recnd 11289 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) | 
| 532 | 529, 531 | sylan 580 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) | 
| 533 | 262 | recnd 11289 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℂ) | 
| 534 | 532, 533 | addcomd 11463 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) | 
| 535 | 534 | ifeq1da 4557 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) | 
| 536 | 535 | mpteq2dv 5244 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 537 | 528, 536 | eqtrd 2777 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) | 
| 538 | 537 | fveq2d 6910 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘f + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) | 
| 539 | 513, 538 | eqtr3d 2779 | . . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) | 
| 540 | 10, 11, 539 | syl2an 596 | . . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) | 
| 541 | 540 | adantr 480 | . 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) | 
| 542 |  | rpcn 13045 | . . . 4
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) | 
| 543 | 542 | 2halvesd 12512 | . . 3
⊢ (𝑦 ∈ ℝ+
→ ((𝑦 / 2) + (𝑦 / 2)) = 𝑦) | 
| 544 | 543 | ad3antlr 731 | . 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((𝑦 / 2) + (𝑦 / 2)) = 𝑦) | 
| 545 | 9, 541, 544 | 3brtr3d 5174 | 1
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < 𝑦) |