MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somincom Structured version   Visualization version   GIF version

Theorem somincom 6095
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somincom ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))

Proof of Theorem somincom
StepHypRef Expression
1 so2nr 5567 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴))
2 nan 829 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)) ↔ (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴))
31, 2mpbi 230 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴)
43iffalsed 4495 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐴)
54eqcomd 2735 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → 𝐴 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
6 sotric 5569 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
76con2bid 354 . . . 4 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ 𝐴𝑅𝐵))
8 ifeq2 4489 . . . . . 6 (𝐴 = 𝐵 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = if(𝐵𝑅𝐴, 𝐵, 𝐵))
9 ifid 4525 . . . . . 6 if(𝐵𝑅𝐴, 𝐵, 𝐵) = 𝐵
108, 9eqtr2di 2781 . . . . 5 (𝐴 = 𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
11 iftrue 4490 . . . . . 6 (𝐵𝑅𝐴 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐵)
1211eqcomd 2735 . . . . 5 (𝐵𝑅𝐴𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
1310, 12jaoi 857 . . . 4 ((𝐴 = 𝐵𝐵𝑅𝐴) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
147, 13biimtrrdi 254 . . 3 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (¬ 𝐴𝑅𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)))
1514imp 406 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
165, 15ifeqda 4521 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  ifcif 4484   class class class wbr 5102   Or wor 5538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-po 5539  df-so 5540
This theorem is referenced by:  somin2  6096
  Copyright terms: Public domain W3C validator