Proof of Theorem somincom
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | so2nr 5619 | . . . . 5
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) | 
| 2 |  | nan 829 | . . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) ↔ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴)) | 
| 3 | 1, 2 | mpbi 230 | . . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴) | 
| 4 | 3 | iffalsed 4535 | . . 3
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐴) | 
| 5 | 4 | eqcomd 2742 | . 2
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → 𝐴 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | 
| 6 |  | sotric 5621 | . . . . 5
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵𝑅𝐴))) | 
| 7 | 6 | con2bid 354 | . . . 4
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) ↔ ¬ 𝐴𝑅𝐵)) | 
| 8 |  | ifeq2 4529 | . . . . . 6
⊢ (𝐴 = 𝐵 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = if(𝐵𝑅𝐴, 𝐵, 𝐵)) | 
| 9 |  | ifid 4565 | . . . . . 6
⊢ if(𝐵𝑅𝐴, 𝐵, 𝐵) = 𝐵 | 
| 10 | 8, 9 | eqtr2di 2793 | . . . . 5
⊢ (𝐴 = 𝐵 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | 
| 11 |  | iftrue 4530 | . . . . . 6
⊢ (𝐵𝑅𝐴 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐵) | 
| 12 | 11 | eqcomd 2742 | . . . . 5
⊢ (𝐵𝑅𝐴 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | 
| 13 | 10, 12 | jaoi 857 | . . . 4
⊢ ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | 
| 14 | 7, 13 | biimtrrdi 254 | . . 3
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐴𝑅𝐵 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))) | 
| 15 | 14 | imp 406 | . 2
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ ¬ 𝐴𝑅𝐵) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | 
| 16 | 5, 15 | ifeqda 4561 | 1
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |