MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somincom Structured version   Visualization version   GIF version

Theorem somincom 6166
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somincom ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))

Proof of Theorem somincom
StepHypRef Expression
1 so2nr 5635 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴))
2 nan 829 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)) ↔ (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴))
31, 2mpbi 230 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴)
43iffalsed 4559 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐴)
54eqcomd 2746 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → 𝐴 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
6 sotric 5637 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
76con2bid 354 . . . 4 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ 𝐴𝑅𝐵))
8 ifeq2 4553 . . . . . 6 (𝐴 = 𝐵 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = if(𝐵𝑅𝐴, 𝐵, 𝐵))
9 ifid 4588 . . . . . 6 if(𝐵𝑅𝐴, 𝐵, 𝐵) = 𝐵
108, 9eqtr2di 2797 . . . . 5 (𝐴 = 𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
11 iftrue 4554 . . . . . 6 (𝐵𝑅𝐴 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐵)
1211eqcomd 2746 . . . . 5 (𝐵𝑅𝐴𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
1310, 12jaoi 856 . . . 4 ((𝐴 = 𝐵𝐵𝑅𝐴) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
147, 13biimtrrdi 254 . . 3 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (¬ 𝐴𝑅𝐵𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)))
1514imp 406 . 2 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))
165, 15ifeqda 4584 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166   Or wor 5606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607  df-so 5608
This theorem is referenced by:  somin2  6167
  Copyright terms: Public domain W3C validator