Proof of Theorem somincom
Step | Hyp | Ref
| Expression |
1 | | so2nr 5520 |
. . . . 5
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) |
2 | | nan 826 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) ↔ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴)) |
3 | 1, 2 | mpbi 229 |
. . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → ¬ 𝐵𝑅𝐴) |
4 | 3 | iffalsed 4467 |
. . 3
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐴) |
5 | 4 | eqcomd 2744 |
. 2
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴𝑅𝐵) → 𝐴 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |
6 | | sotric 5522 |
. . . . 5
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵𝑅𝐴))) |
7 | 6 | con2bid 354 |
. . . 4
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) ↔ ¬ 𝐴𝑅𝐵)) |
8 | | ifeq2 4461 |
. . . . . 6
⊢ (𝐴 = 𝐵 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = if(𝐵𝑅𝐴, 𝐵, 𝐵)) |
9 | | ifid 4496 |
. . . . . 6
⊢ if(𝐵𝑅𝐴, 𝐵, 𝐵) = 𝐵 |
10 | 8, 9 | eqtr2di 2796 |
. . . . 5
⊢ (𝐴 = 𝐵 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |
11 | | iftrue 4462 |
. . . . . 6
⊢ (𝐵𝑅𝐴 → if(𝐵𝑅𝐴, 𝐵, 𝐴) = 𝐵) |
12 | 11 | eqcomd 2744 |
. . . . 5
⊢ (𝐵𝑅𝐴 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |
13 | 10, 12 | jaoi 853 |
. . . 4
⊢ ((𝐴 = 𝐵 ∨ 𝐵𝑅𝐴) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |
14 | 7, 13 | syl6bir 253 |
. . 3
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐴𝑅𝐵 → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴))) |
15 | 14 | imp 406 |
. 2
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ ¬ 𝐴𝑅𝐵) → 𝐵 = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |
16 | 5, 15 | ifeqda 4492 |
1
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) |