Step | Hyp | Ref
| Expression |
1 | | elin 3882 |
. . . . . 6
⊢ (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ)) |
2 | 1 | baib 539 |
. . . . 5
⊢ (𝑝 ∈ (1...𝐴) → (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ 𝑝 ∈ ℙ)) |
3 | 2 | ifbid 4462 |
. . . 4
⊢ (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)) |
4 | | fvif 6733 |
. . . . 5
⊢
(log‘if(𝑝
∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) |
5 | | log1 25474 |
. . . . . 6
⊢
(log‘1) = 0 |
6 | | ifeq2 4444 |
. . . . . 6
⊢
((log‘1) = 0 → if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢ if(𝑝 ∈ ℙ,
(log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) |
8 | 4, 7 | eqtri 2765 |
. . . 4
⊢
(log‘if(𝑝
∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) |
9 | 3, 8 | eqtr4di 2796 |
. . 3
⊢ (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))) |
10 | 9 | sumeq2i 15263 |
. 2
⊢
Σ𝑝 ∈
(1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) |
11 | | inss1 4143 |
. . . 4
⊢
((1...𝐴) ∩
ℙ) ⊆ (1...𝐴) |
12 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ((1...𝐴) ∩ ℙ)) |
13 | 12 | elin1d 4112 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ (1...𝐴)) |
14 | | elfznn 13141 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (1...𝐴) → 𝑝 ∈ ℕ) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
16 | 12 | elin2d 4113 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
17 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝐴 ∈ ℕ) |
18 | 16, 17 | pccld 16403 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
19 | 15, 18 | nnexpcld 13812 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) |
20 | 19 | nnrpd 12626 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈
ℝ+) |
21 | 20 | relogcld 25511 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℝ) |
22 | 21 | recnd 10861 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) |
23 | 22 | ralrimiva 3105 |
. . . 4
⊢ (𝐴 ∈ ℕ →
∀𝑝 ∈
((1...𝐴) ∩
ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) |
24 | | fzfi 13545 |
. . . . . 6
⊢
(1...𝐴) ∈
Fin |
25 | 24 | olci 866 |
. . . . 5
⊢
((1...𝐴) ⊆
(ℤ≥‘1) ∨ (1...𝐴) ∈ Fin) |
26 | | sumss2 15290 |
. . . . 5
⊢
(((((1...𝐴) ∩
ℙ) ⊆ (1...𝐴)
∧ ∀𝑝 ∈
((1...𝐴) ∩
ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) ∧ ((1...𝐴) ⊆
(ℤ≥‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)) |
27 | 25, 26 | mpan2 691 |
. . . 4
⊢
((((1...𝐴) ∩
ℙ) ⊆ (1...𝐴)
∧ ∀𝑝 ∈
((1...𝐴) ∩
ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)) |
28 | 11, 23, 27 | sylancr 590 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ ((1...𝐴) ∩
ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)) |
29 | 15 | nnrpd 12626 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
30 | 18 | nn0zd 12280 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℤ) |
31 | | relogexp 25484 |
. . . . 5
⊢ ((𝑝 ∈ ℝ+
∧ (𝑝 pCnt 𝐴) ∈ ℤ) →
(log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝))) |
32 | 29, 30, 31 | syl2anc 587 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝))) |
33 | 32 | sumeq2dv 15267 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ ((1...𝐴) ∩
ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝))) |
34 | 28, 33 | eqtr3d 2779 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝))) |
35 | 14 | adantl 485 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → 𝑝 ∈ ℕ) |
36 | | eleq1w 2820 |
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ)) |
37 | | id 22 |
. . . . . . . . 9
⊢ (𝑛 = 𝑝 → 𝑛 = 𝑝) |
38 | | oveq1 7220 |
. . . . . . . . 9
⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝐴) = (𝑝 pCnt 𝐴)) |
39 | 37, 38 | oveq12d 7231 |
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝑛↑(𝑛 pCnt 𝐴)) = (𝑝↑(𝑝 pCnt 𝐴))) |
40 | 36, 39 | ifbieq1d 4463 |
. . . . . . 7
⊢ (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) |
41 | 40 | fveq2d 6721 |
. . . . . 6
⊢ (𝑛 = 𝑝 → (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))) |
42 | | eqid 2737 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(log‘if(𝑛 ∈
ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) = (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) |
43 | | fvex 6730 |
. . . . . 6
⊢
(log‘if(𝑝
∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ V |
44 | 41, 42, 43 | fvmpt 6818 |
. . . . 5
⊢ (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(log‘if(𝑛 ∈
ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))) |
45 | 35, 44 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))) |
46 | | elnnuz 12478 |
. . . . 5
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈
(ℤ≥‘1)) |
47 | 46 | biimpi 219 |
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
(ℤ≥‘1)) |
48 | 35 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ) |
49 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
50 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) |
51 | 49, 50 | pccld 16403 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
52 | 48, 51 | nnexpcld 13812 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) |
53 | | 1nn 11841 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
54 | 53 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ ¬ 𝑝 ∈ ℙ) → 1 ∈
ℕ) |
55 | 52, 54 | ifclda 4474 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℕ) |
56 | 55 | nnrpd 12626 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈
ℝ+) |
57 | 56 | relogcld 25511 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℝ) |
58 | 57 | recnd 10861 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℂ) |
59 | 45, 47, 58 | fsumser 15294 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴)) |
60 | | rpmulcl 12609 |
. . . . 5
⊢ ((𝑝 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (𝑝 · 𝑚) ∈
ℝ+) |
61 | 60 | adantl 485 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+
∧ 𝑚 ∈
ℝ+)) → (𝑝 · 𝑚) ∈
ℝ+) |
62 | | eqid 2737 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) |
63 | | ovex 7246 |
. . . . . . . 8
⊢ (𝑝↑(𝑝 pCnt 𝐴)) ∈ V |
64 | | 1ex 10829 |
. . . . . . . 8
⊢ 1 ∈
V |
65 | 63, 64 | ifex 4489 |
. . . . . . 7
⊢ if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ V |
66 | 40, 62, 65 | fvmpt 6818 |
. . . . . 6
⊢ (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) |
67 | 35, 66 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) |
68 | 67, 56 | eqeltrd 2838 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) ∈
ℝ+) |
69 | | relogmul 25480 |
. . . . 5
⊢ ((𝑝 ∈ ℝ+
∧ 𝑚 ∈
ℝ+) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚))) |
70 | 69 | adantl 485 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+
∧ 𝑚 ∈
ℝ+)) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚))) |
71 | 67 | fveq2d 6721 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))) |
72 | 71, 45 | eqtr4d 2780 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝)) |
73 | 61, 68, 47, 70, 72 | seqhomo 13623 |
. . 3
⊢ (𝐴 ∈ ℕ →
(log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴)) |
74 | 62 | pcprod 16448 |
. . . 4
⊢ (𝐴 ∈ ℕ → (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴) = 𝐴) |
75 | 74 | fveq2d 6721 |
. . 3
⊢ (𝐴 ∈ ℕ →
(log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (log‘𝐴)) |
76 | 59, 73, 75 | 3eqtr2d 2783 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (log‘𝐴)) |
77 | 10, 34, 76 | 3eqtr3a 2802 |
1
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴)) |