MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclogsum Structured version   Visualization version   GIF version

Theorem pclogsum 27279
Description: The logarithmic analogue of pcprod 16944. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
pclogsum (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pclogsum
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
21baib 535 . . . . 5 (𝑝 ∈ (1...𝐴) → (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ 𝑝 ∈ ℙ))
32ifbid 4571 . . . 4 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
4 fvif 6938 . . . . 5 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1))
5 log1 26647 . . . . . 6 (log‘1) = 0
6 ifeq2 4553 . . . . . 6 ((log‘1) = 0 → if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
75, 6ax-mp 5 . . . . 5 if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
84, 7eqtri 2768 . . . 4 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
93, 8eqtr4di 2798 . . 3 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
109sumeq2i 15748 . 2 Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
11 inss1 4258 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
12 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ((1...𝐴) ∩ ℙ))
1312elin1d 4227 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ (1...𝐴))
14 elfznn 13615 . . . . . . . . . 10 (𝑝 ∈ (1...𝐴) → 𝑝 ∈ ℕ)
1513, 14syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
1612elin2d 4228 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
17 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝐴 ∈ ℕ)
1816, 17pccld 16899 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1915, 18nnexpcld 14296 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
2019nnrpd 13099 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℝ+)
2120relogcld 26685 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℝ)
2221recnd 11320 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
2322ralrimiva 3152 . . . 4 (𝐴 ∈ ℕ → ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
24 fzfi 14025 . . . . . 6 (1...𝐴) ∈ Fin
2524olci 865 . . . . 5 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
26 sumss2 15776 . . . . 5 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2725, 26mpan2 690 . . . 4 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2811, 23, 27sylancr 586 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2915nnrpd 13099 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3018nn0zd 12667 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℤ)
31 relogexp 26658 . . . . 5 ((𝑝 ∈ ℝ+ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3229, 30, 31syl2anc 583 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3332sumeq2dv 15752 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3428, 33eqtr3d 2782 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3514adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → 𝑝 ∈ ℕ)
36 eleq1w 2827 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
37 id 22 . . . . . . . . 9 (𝑛 = 𝑝𝑛 = 𝑝)
38 oveq1 7457 . . . . . . . . 9 (𝑛 = 𝑝 → (𝑛 pCnt 𝐴) = (𝑝 pCnt 𝐴))
3937, 38oveq12d 7468 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛↑(𝑛 pCnt 𝐴)) = (𝑝↑(𝑝 pCnt 𝐴)))
4036, 39ifbieq1d 4572 . . . . . . 7 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
4140fveq2d 6926 . . . . . 6 (𝑛 = 𝑝 → (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
42 eqid 2740 . . . . . 6 (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) = (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))
43 fvex 6935 . . . . . 6 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ V
4441, 42, 43fvmpt 7031 . . . . 5 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
4535, 44syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
46 elnnuz 12949 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4746biimpi 216 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
4835adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
49 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
5149, 50pccld 16899 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
5248, 51nnexpcld 14296 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
53 1nn 12306 . . . . . . . . 9 1 ∈ ℕ
5453a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ ¬ 𝑝 ∈ ℙ) → 1 ∈ ℕ)
5552, 54ifclda 4583 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℕ)
5655nnrpd 13099 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℝ+)
5756relogcld 26685 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℝ)
5857recnd 11320 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℂ)
5945, 47, 58fsumser 15780 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
60 rpmulcl 13082 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑝 · 𝑚) ∈ ℝ+)
6160adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (𝑝 · 𝑚) ∈ ℝ+)
62 eqid 2740 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))
63 ovex 7483 . . . . . . . 8 (𝑝↑(𝑝 pCnt 𝐴)) ∈ V
64 1ex 11288 . . . . . . . 8 1 ∈ V
6563, 64ifex 4598 . . . . . . 7 if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ V
6640, 62, 65fvmpt 7031 . . . . . 6 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6735, 66syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6867, 56eqeltrd 2844 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) ∈ ℝ+)
69 relogmul 26654 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7069adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7167fveq2d 6926 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
7271, 45eqtr4d 2783 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝))
7361, 68, 47, 70, 72seqhomo 14102 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
7462pcprod 16944 . . . 4 (𝐴 ∈ ℕ → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴) = 𝐴)
7574fveq2d 6926 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (log‘𝐴))
7659, 73, 753eqtr2d 2786 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (log‘𝐴))
7710, 34, 763eqtr3a 2804 1 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  ifcif 4548  cmpt 5249  cfv 6575  (class class class)co 7450  Fincfn 9005  cc 11184  0cc0 11186  1c1 11187   + caddc 11189   · cmul 11191  cn 12295  cz 12641  cuz 12905  +crp 13059  ...cfz 13569  seqcseq 14054  cexp 14114  Σcsu 15736  cprime 16720   pCnt cpc 16885  logclog 26616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264  ax-addf 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-pm 8889  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-fi 9482  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-ioo 13413  df-ioc 13414  df-ico 13415  df-icc 13416  df-fz 13570  df-fzo 13714  df-fl 13845  df-mod 13923  df-seq 14055  df-exp 14115  df-fac 14325  df-bc 14354  df-hash 14382  df-shft 15118  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-limsup 15519  df-clim 15536  df-rlim 15537  df-sum 15737  df-ef 16117  df-sin 16119  df-cos 16120  df-pi 16122  df-dvds 16305  df-gcd 16543  df-prm 16721  df-pc 16886  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-hom 17337  df-cco 17338  df-rest 17484  df-topn 17485  df-0g 17503  df-gsum 17504  df-topgen 17505  df-pt 17506  df-prds 17509  df-xrs 17564  df-qtop 17569  df-imas 17570  df-xps 17572  df-mre 17646  df-mrc 17647  df-acs 17649  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-mulg 19110  df-cntz 19359  df-cmn 19826  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-mopn 21385  df-fbas 21386  df-fg 21387  df-cnfld 21390  df-top 22923  df-topon 22940  df-topsp 22962  df-bases 22976  df-cld 23050  df-ntr 23051  df-cls 23052  df-nei 23129  df-lp 23167  df-perf 23168  df-cn 23258  df-cnp 23259  df-haus 23346  df-tx 23593  df-hmeo 23786  df-fil 23877  df-fm 23969  df-flim 23970  df-flf 23971  df-xms 24353  df-ms 24354  df-tms 24355  df-cncf 24925  df-limc 25923  df-dv 25924  df-log 26618
This theorem is referenced by:  vmasum  27280  chebbnd1lem1  27533
  Copyright terms: Public domain W3C validator