MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclogsum Structured version   Visualization version   GIF version

Theorem pclogsum 27153
Description: The logarithmic analogue of pcprod 16807. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
pclogsum (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pclogsum
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3913 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
21baib 535 . . . . 5 (𝑝 ∈ (1...𝐴) → (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ 𝑝 ∈ ℙ))
32ifbid 4496 . . . 4 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
4 fvif 6838 . . . . 5 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1))
5 log1 26521 . . . . . 6 (log‘1) = 0
6 ifeq2 4477 . . . . . 6 ((log‘1) = 0 → if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
75, 6ax-mp 5 . . . . 5 if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
84, 7eqtri 2754 . . . 4 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
93, 8eqtr4di 2784 . . 3 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
109sumeq2i 15605 . 2 Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
11 inss1 4184 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
12 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ((1...𝐴) ∩ ℙ))
1312elin1d 4151 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ (1...𝐴))
14 elfznn 13453 . . . . . . . . . 10 (𝑝 ∈ (1...𝐴) → 𝑝 ∈ ℕ)
1513, 14syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
1612elin2d 4152 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
17 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝐴 ∈ ℕ)
1816, 17pccld 16762 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1915, 18nnexpcld 14152 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
2019nnrpd 12932 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℝ+)
2120relogcld 26559 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℝ)
2221recnd 11140 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
2322ralrimiva 3124 . . . 4 (𝐴 ∈ ℕ → ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
24 fzfi 13879 . . . . . 6 (1...𝐴) ∈ Fin
2524olci 866 . . . . 5 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
26 sumss2 15633 . . . . 5 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2725, 26mpan2 691 . . . 4 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2811, 23, 27sylancr 587 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2915nnrpd 12932 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3018nn0zd 12494 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℤ)
31 relogexp 26532 . . . . 5 ((𝑝 ∈ ℝ+ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3229, 30, 31syl2anc 584 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3332sumeq2dv 15609 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3428, 33eqtr3d 2768 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3514adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → 𝑝 ∈ ℕ)
36 eleq1w 2814 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
37 id 22 . . . . . . . . 9 (𝑛 = 𝑝𝑛 = 𝑝)
38 oveq1 7353 . . . . . . . . 9 (𝑛 = 𝑝 → (𝑛 pCnt 𝐴) = (𝑝 pCnt 𝐴))
3937, 38oveq12d 7364 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛↑(𝑛 pCnt 𝐴)) = (𝑝↑(𝑝 pCnt 𝐴)))
4036, 39ifbieq1d 4497 . . . . . . 7 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
4140fveq2d 6826 . . . . . 6 (𝑛 = 𝑝 → (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
42 eqid 2731 . . . . . 6 (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) = (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))
43 fvex 6835 . . . . . 6 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ V
4441, 42, 43fvmpt 6929 . . . . 5 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
4535, 44syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
46 elnnuz 12776 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4746biimpi 216 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
4835adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
49 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
5149, 50pccld 16762 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
5248, 51nnexpcld 14152 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
53 1nn 12136 . . . . . . . . 9 1 ∈ ℕ
5453a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ ¬ 𝑝 ∈ ℙ) → 1 ∈ ℕ)
5552, 54ifclda 4508 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℕ)
5655nnrpd 12932 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℝ+)
5756relogcld 26559 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℝ)
5857recnd 11140 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℂ)
5945, 47, 58fsumser 15637 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
60 rpmulcl 12915 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑝 · 𝑚) ∈ ℝ+)
6160adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (𝑝 · 𝑚) ∈ ℝ+)
62 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))
63 ovex 7379 . . . . . . . 8 (𝑝↑(𝑝 pCnt 𝐴)) ∈ V
64 1ex 11108 . . . . . . . 8 1 ∈ V
6563, 64ifex 4523 . . . . . . 7 if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ V
6640, 62, 65fvmpt 6929 . . . . . 6 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6735, 66syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6867, 56eqeltrd 2831 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) ∈ ℝ+)
69 relogmul 26528 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7069adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7167fveq2d 6826 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
7271, 45eqtr4d 2769 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝))
7361, 68, 47, 70, 72seqhomo 13956 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
7462pcprod 16807 . . . 4 (𝐴 ∈ ℕ → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴) = 𝐴)
7574fveq2d 6826 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (log‘𝐴))
7659, 73, 753eqtr2d 2772 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (log‘𝐴))
7710, 34, 763eqtr3a 2790 1 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cin 3896  wss 3897  ifcif 4472  cmpt 5170  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cn 12125  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  seqcseq 13908  cexp 13968  Σcsu 15593  cprime 16582   pCnt cpc 16748  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492
This theorem is referenced by:  vmasum  27154  chebbnd1lem1  27407
  Copyright terms: Public domain W3C validator