Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem3 Structured version   Visualization version   GIF version

Theorem smflimsuplem3 41774
Description: The limit of the (𝐻𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem3.m (𝜑𝑀 ∈ ℤ)
smflimsuplem3.z 𝑍 = (ℤ𝑀)
smflimsuplem3.s (𝜑𝑆 ∈ SAlg)
smflimsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem3.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem3.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem3 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐸   𝑚,𝐹,𝑥   𝑘,𝐻,𝑥   𝑆,𝑘,𝑛   𝑘,𝑍,𝑛,𝑥   𝑚,𝑍,𝑛   𝜑,𝑘,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑚)   𝐸(𝑘,𝑚,𝑛)   𝐹(𝑘,𝑛)   𝐻(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑚,𝑛)

Proof of Theorem smflimsuplem3
StepHypRef Expression
1 nfv 2010 . 2 𝑛𝜑
2 nfv 2010 . 2 𝑥𝜑
3 nfv 2010 . 2 𝑘𝜑
4 smflimsuplem3.m . 2 (𝜑𝑀 ∈ ℤ)
5 smflimsuplem3.z . 2 𝑍 = (ℤ𝑀)
6 fvex 6424 . . . 4 (𝐻𝑛) ∈ V
76dmex 7334 . . 3 dom (𝐻𝑛) ∈ V
87a1i 11 . 2 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ∈ V)
9 fvexd 6426 . 2 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐻𝑛)) → ((𝐻𝑛)‘𝑥) ∈ V)
10 smflimsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
1110adantr 473 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
12 smflimsuplem3.e . . . . . . . . . . . . 13 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1312a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}))
14 eqid 2799 . . . . . . . . . . . . 13 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
155eluzelz2 40370 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℤ)
16 eqid 2799 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
1715, 16uzn0d 40395 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
18 fvex 6424 . . . . . . . . . . . . . . . . . 18 (𝐹𝑚) ∈ V
1918dmex 7334 . . . . . . . . . . . . . . . . 17 dom (𝐹𝑚) ∈ V
2019rgenw 3105 . . . . . . . . . . . . . . . 16 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2217, 21iinexd 40075 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2322adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2414, 23rabexd 5008 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
2513, 24fvmpt2d 6518 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
26 fvres 6430 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹 ↾ (ℤ𝑛))‘𝑚) = (𝐹𝑚))
2726eqcomd 2805 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2827adantl 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2928dmeqd 5529 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝐹𝑚) = dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3029iineq2dv 4733 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3130eleq2d 2864 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚)))
3227fveq1d 6413 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹𝑚)‘𝑥) = (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3332mpteq2ia 4933 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3433rneqi 5555 . . . . . . . . . . . . . . . 16 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3534supeq1i 8595 . . . . . . . . . . . . . . 15 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )
3635a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
3736eleq1d 2863 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
3831, 37anbi12d 625 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3370 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4025, 39eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4140, 36mpteq12dv 4926 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )))
42 nfcv 2941 . . . . . . . . . 10 𝑚(𝐹 ↾ (ℤ𝑛))
43 nfcv 2941 . . . . . . . . . 10 𝑥(𝐹 ↾ (ℤ𝑛))
4415adantl 474 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
45 smflimsuplem3.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
4645adantr 473 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
475eleq2i 2870 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4847biimpi 208 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
49 uzss 11951 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑛𝑍 → (ℤ𝑛) ⊆ (ℤ𝑀))
5150, 5syl6sseqr 3848 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
5251adantl 474 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
5346, 52fssresd 6286 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)):(ℤ𝑛)⟶(SMblFn‘𝑆))
54 eqid 2799 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
55 eqid 2799 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
5642, 43, 44, 16, 11, 53, 54, 55smfsupxr 41768 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
5741, 56eqeltrd 2878 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
58 smflimsuplem3.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
5957, 58fmptd 6610 . . . . . . 7 (𝜑𝐻:𝑍⟶(SMblFn‘𝑆))
6059ffvelrnda 6585 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ (SMblFn‘𝑆))
61 eqid 2799 . . . . . 6 dom (𝐻𝑛) = dom (𝐻𝑛)
6211, 60, 61smff 41687 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛):dom (𝐻𝑛)⟶ℝ)
6362feqmptd 6474 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)))
6463eqcomd 2805 . . 3 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) = (𝐻𝑛))
6564, 60eqeltrd 2878 . 2 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
66 eqid 2799 . 2 {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ }
67 eqid 2799 . 2 (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥))))
681, 2, 3, 4, 5, 8, 9, 10, 65, 66, 67smflimmpt 41762 1 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  {crab 3093  Vcvv 3385  wss 3769   ciun 4710   ciin 4711  cmpt 4922  dom cdm 5312  ran crn 5313  cres 5314  wf 6097  cfv 6101  supcsup 8588  cr 10223  *cxr 10362   < clt 10363  cz 11666  cuz 11930  cli 14556  SAlgcsalg 41271  SMblFncsmblfn 41655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-ac2 9573  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-ac 9225  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-ioo 12428  df-ioc 12429  df-ico 12430  df-fl 12848  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-rlim 14561  df-rest 16398  df-topgen 16419  df-top 21027  df-bases 21079  df-salg 41272  df-salgen 41276  df-smblfn 41656
This theorem is referenced by:  smflimsuplem8  41779
  Copyright terms: Public domain W3C validator