Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem3 Structured version   Visualization version   GIF version

Theorem smflimsuplem3 44242
Description: The limit of the (𝐻𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem3.m (𝜑𝑀 ∈ ℤ)
smflimsuplem3.z 𝑍 = (ℤ𝑀)
smflimsuplem3.s (𝜑𝑆 ∈ SAlg)
smflimsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem3.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem3.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem3 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐸   𝑚,𝐹,𝑥   𝑘,𝐻,𝑥   𝑆,𝑘,𝑛   𝑘,𝑍,𝑛,𝑥   𝑚,𝑍,𝑛   𝜑,𝑘,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑚)   𝐸(𝑘,𝑚,𝑛)   𝐹(𝑘,𝑛)   𝐻(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑚,𝑛)

Proof of Theorem smflimsuplem3
StepHypRef Expression
1 nfv 1918 . 2 𝑛𝜑
2 nfv 1918 . 2 𝑥𝜑
3 nfv 1918 . 2 𝑘𝜑
4 smflimsuplem3.m . 2 (𝜑𝑀 ∈ ℤ)
5 smflimsuplem3.z . 2 𝑍 = (ℤ𝑀)
6 fvex 6769 . . . 4 (𝐻𝑛) ∈ V
76dmex 7732 . . 3 dom (𝐻𝑛) ∈ V
87a1i 11 . 2 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ∈ V)
9 fvexd 6771 . 2 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐻𝑛)) → ((𝐻𝑛)‘𝑥) ∈ V)
10 smflimsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
12 smflimsuplem3.e . . . . . . . . . . . . 13 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1312a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}))
14 eqid 2738 . . . . . . . . . . . . 13 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
155eluzelz2 42833 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℤ)
16 eqid 2738 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
1715, 16uzn0d 42855 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
18 fvex 6769 . . . . . . . . . . . . . . . . . 18 (𝐹𝑚) ∈ V
1918dmex 7732 . . . . . . . . . . . . . . . . 17 dom (𝐹𝑚) ∈ V
2019rgenw 3075 . . . . . . . . . . . . . . . 16 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2217, 21iinexd 42571 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2322adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2414, 23rabexd 5252 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
2513, 24fvmpt2d 6870 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
26 fvres 6775 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹 ↾ (ℤ𝑛))‘𝑚) = (𝐹𝑚))
2726eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2827adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2928dmeqd 5803 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝐹𝑚) = dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3029iineq2dv 4946 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3130eleq2d 2824 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚)))
3227fveq1d 6758 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹𝑚)‘𝑥) = (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3332mpteq2ia 5173 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3433rneqi 5835 . . . . . . . . . . . . . . . 16 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3534supeq1i 9136 . . . . . . . . . . . . . . 15 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )
3635a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
3736eleq1d 2823 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
3831, 37anbi12d 630 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3400 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4025, 39eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4140, 36mpteq12dv 5161 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )))
42 nfcv 2906 . . . . . . . . . 10 𝑚(𝐹 ↾ (ℤ𝑛))
43 nfcv 2906 . . . . . . . . . 10 𝑥(𝐹 ↾ (ℤ𝑛))
4415adantl 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
45 smflimsuplem3.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
4645adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
475eleq2i 2830 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4847biimpi 215 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
49 uzss 12534 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑛𝑍 → (ℤ𝑛) ⊆ (ℤ𝑀))
5150, 5sseqtrrdi 3968 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
5251adantl 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
5346, 52fssresd 6625 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)):(ℤ𝑛)⟶(SMblFn‘𝑆))
54 eqid 2738 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
55 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
5642, 43, 44, 16, 11, 53, 54, 55smfsupxr 44236 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
5741, 56eqeltrd 2839 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
58 smflimsuplem3.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
5957, 58fmptd 6970 . . . . . . 7 (𝜑𝐻:𝑍⟶(SMblFn‘𝑆))
6059ffvelrnda 6943 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ (SMblFn‘𝑆))
61 eqid 2738 . . . . . 6 dom (𝐻𝑛) = dom (𝐻𝑛)
6211, 60, 61smff 44155 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛):dom (𝐻𝑛)⟶ℝ)
6362feqmptd 6819 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)))
6463eqcomd 2744 . . 3 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) = (𝐻𝑛))
6564, 60eqeltrd 2839 . 2 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
66 eqid 2738 . 2 {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ }
67 eqid 2738 . 2 (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥))))
681, 2, 3, 4, 5, 8, 9, 10, 65, 66, 67smflimmpt 44230 1 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  wf 6414  cfv 6418  supcsup 9129  cr 10801  *cxr 10939   < clt 10940  cz 12249  cuz 12511  cli 15121  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ioc 13013  df-ico 13014  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-rest 17050  df-topgen 17071  df-top 21951  df-bases 22004  df-salg 43740  df-salgen 43744  df-smblfn 44124
This theorem is referenced by:  smflimsuplem8  44247
  Copyright terms: Public domain W3C validator