Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem3 Structured version   Visualization version   GIF version

Theorem smflimsuplem3 43453
Description: The limit of the (𝐻𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem3.m (𝜑𝑀 ∈ ℤ)
smflimsuplem3.z 𝑍 = (ℤ𝑀)
smflimsuplem3.s (𝜑𝑆 ∈ SAlg)
smflimsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem3.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem3.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem3 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐸   𝑚,𝐹,𝑥   𝑘,𝐻,𝑥   𝑆,𝑘,𝑛   𝑘,𝑍,𝑛,𝑥   𝑚,𝑍,𝑛   𝜑,𝑘,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑚)   𝐸(𝑘,𝑚,𝑛)   𝐹(𝑘,𝑛)   𝐻(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑚,𝑛)

Proof of Theorem smflimsuplem3
StepHypRef Expression
1 nfv 1915 . 2 𝑛𝜑
2 nfv 1915 . 2 𝑥𝜑
3 nfv 1915 . 2 𝑘𝜑
4 smflimsuplem3.m . 2 (𝜑𝑀 ∈ ℤ)
5 smflimsuplem3.z . 2 𝑍 = (ℤ𝑀)
6 fvex 6658 . . . 4 (𝐻𝑛) ∈ V
76dmex 7598 . . 3 dom (𝐻𝑛) ∈ V
87a1i 11 . 2 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ∈ V)
9 fvexd 6660 . 2 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐻𝑛)) → ((𝐻𝑛)‘𝑥) ∈ V)
10 smflimsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
1110adantr 484 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
12 smflimsuplem3.e . . . . . . . . . . . . 13 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1312a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}))
14 eqid 2798 . . . . . . . . . . . . 13 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
155eluzelz2 42040 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℤ)
16 eqid 2798 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
1715, 16uzn0d 42062 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
18 fvex 6658 . . . . . . . . . . . . . . . . . 18 (𝐹𝑚) ∈ V
1918dmex 7598 . . . . . . . . . . . . . . . . 17 dom (𝐹𝑚) ∈ V
2019rgenw 3118 . . . . . . . . . . . . . . . 16 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2217, 21iinexd 41769 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2322adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2414, 23rabexd 5200 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
2513, 24fvmpt2d 6758 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
26 fvres 6664 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹 ↾ (ℤ𝑛))‘𝑚) = (𝐹𝑚))
2726eqcomd 2804 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2827adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2928dmeqd 5738 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝐹𝑚) = dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3029iineq2dv 4906 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3130eleq2d 2875 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚)))
3227fveq1d 6647 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹𝑚)‘𝑥) = (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3332mpteq2ia 5121 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3433rneqi 5771 . . . . . . . . . . . . . . . 16 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3534supeq1i 8895 . . . . . . . . . . . . . . 15 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )
3635a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
3736eleq1d 2874 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
3831, 37anbi12d 633 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3423 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4025, 39eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4140, 36mpteq12dv 5115 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )))
42 nfcv 2955 . . . . . . . . . 10 𝑚(𝐹 ↾ (ℤ𝑛))
43 nfcv 2955 . . . . . . . . . 10 𝑥(𝐹 ↾ (ℤ𝑛))
4415adantl 485 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
45 smflimsuplem3.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
4645adantr 484 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
475eleq2i 2881 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4847biimpi 219 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
49 uzss 12253 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑛𝑍 → (ℤ𝑛) ⊆ (ℤ𝑀))
5150, 5sseqtrrdi 3966 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
5251adantl 485 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
5346, 52fssresd 6519 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)):(ℤ𝑛)⟶(SMblFn‘𝑆))
54 eqid 2798 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
55 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
5642, 43, 44, 16, 11, 53, 54, 55smfsupxr 43447 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
5741, 56eqeltrd 2890 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
58 smflimsuplem3.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
5957, 58fmptd 6855 . . . . . . 7 (𝜑𝐻:𝑍⟶(SMblFn‘𝑆))
6059ffvelrnda 6828 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ (SMblFn‘𝑆))
61 eqid 2798 . . . . . 6 dom (𝐻𝑛) = dom (𝐻𝑛)
6211, 60, 61smff 43366 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛):dom (𝐻𝑛)⟶ℝ)
6362feqmptd 6708 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)))
6463eqcomd 2804 . . 3 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) = (𝐻𝑛))
6564, 60eqeltrd 2890 . 2 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
66 eqid 2798 . 2 {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ }
67 eqid 2798 . 2 (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥))))
681, 2, 3, 4, 5, 8, 9, 10, 65, 66, 67smflimmpt 43441 1 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881   ciun 4881   ciin 4882  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  wf 6320  cfv 6324  supcsup 8888  cr 10525  *cxr 10663   < clt 10664  cz 11969  cuz 12231  cli 14833  SAlgcsalg 42950  SMblFncsmblfn 43334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ioc 12731  df-ico 12732  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-rest 16688  df-topgen 16709  df-top 21499  df-bases 21551  df-salg 42951  df-salgen 42955  df-smblfn 43335
This theorem is referenced by:  smflimsuplem8  43458
  Copyright terms: Public domain W3C validator