Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem3 Structured version   Visualization version   GIF version

Theorem smflimsuplem3 46820
Description: The limit of the (𝐻𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem3.m (𝜑𝑀 ∈ ℤ)
smflimsuplem3.z 𝑍 = (ℤ𝑀)
smflimsuplem3.s (𝜑𝑆 ∈ SAlg)
smflimsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem3.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem3.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem3 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐸   𝑚,𝐹,𝑥   𝑘,𝐻,𝑥   𝑆,𝑘,𝑛   𝑘,𝑍,𝑛,𝑥   𝑚,𝑍,𝑛   𝜑,𝑘,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑚)   𝐸(𝑘,𝑚,𝑛)   𝐹(𝑘,𝑛)   𝐻(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑚,𝑛)

Proof of Theorem smflimsuplem3
StepHypRef Expression
1 nfv 1914 . 2 𝑛𝜑
2 nfv 1914 . 2 𝑥𝜑
3 nfv 1914 . 2 𝑘𝜑
4 smflimsuplem3.m . 2 (𝜑𝑀 ∈ ℤ)
5 smflimsuplem3.z . 2 𝑍 = (ℤ𝑀)
6 fvex 6871 . . . 4 (𝐻𝑛) ∈ V
76dmex 7885 . . 3 dom (𝐻𝑛) ∈ V
87a1i 11 . 2 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ∈ V)
9 fvexd 6873 . 2 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐻𝑛)) → ((𝐻𝑛)‘𝑥) ∈ V)
10 smflimsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
12 smflimsuplem3.e . . . . . . . . . . . . 13 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1312a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}))
14 eqid 2729 . . . . . . . . . . . . 13 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
155eluzelz2 45399 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℤ)
16 eqid 2729 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
1715, 16uzn0d 45421 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
18 fvex 6871 . . . . . . . . . . . . . . . . . 18 (𝐹𝑚) ∈ V
1918dmex 7885 . . . . . . . . . . . . . . . . 17 dom (𝐹𝑚) ∈ V
2019rgenw 3048 . . . . . . . . . . . . . . . 16 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2217, 21iinexd 45127 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2322adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2414, 23rabexd 5295 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
2513, 24fvmpt2d 6981 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
26 fvres 6877 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹 ↾ (ℤ𝑛))‘𝑚) = (𝐹𝑚))
2726eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2827adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
2928dmeqd 5869 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝐹𝑚) = dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3029iineq2dv 4981 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3130eleq2d 2814 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚)))
3227fveq1d 6860 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹𝑚)‘𝑥) = (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3332mpteq2ia 5202 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3433rneqi 5901 . . . . . . . . . . . . . . . 16 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3534supeq1i 9398 . . . . . . . . . . . . . . 15 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )
3635a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
3736eleq1d 2813 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
3831, 37anbi12d 632 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3407 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4025, 39eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4140, 36mpteq12dv 5194 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )))
42 nfcv 2891 . . . . . . . . . 10 𝑚(𝐹 ↾ (ℤ𝑛))
43 nfcv 2891 . . . . . . . . . 10 𝑥(𝐹 ↾ (ℤ𝑛))
4415adantl 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
45 smflimsuplem3.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
4645adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
475eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4847biimpi 216 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
49 uzss 12816 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . . . . . . . . . 13 (𝑛𝑍 → (ℤ𝑛) ⊆ (ℤ𝑀))
5150, 5sseqtrrdi 3988 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
5251adantl 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
5346, 52fssresd 6727 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)):(ℤ𝑛)⟶(SMblFn‘𝑆))
54 eqid 2729 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
55 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
5642, 43, 44, 16, 11, 53, 54, 55smfsupxr 46814 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
5741, 56eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
58 smflimsuplem3.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
5957, 58fmptd 7086 . . . . . . 7 (𝜑𝐻:𝑍⟶(SMblFn‘𝑆))
6059ffvelcdmda 7056 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ (SMblFn‘𝑆))
61 eqid 2729 . . . . . 6 dom (𝐻𝑛) = dom (𝐻𝑛)
6211, 60, 61smff 46730 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛):dom (𝐻𝑛)⟶ℝ)
6362feqmptd 6929 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)))
6463eqcomd 2735 . . 3 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) = (𝐻𝑛))
6564, 60eqeltrd 2828 . 2 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
66 eqid 2729 . 2 {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ }
67 eqid 2729 . 2 (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥))))
681, 2, 3, 4, 5, 8, 9, 10, 65, 66, 67smflimmpt 46808 1 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914   ciun 4955   ciin 4956  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  supcsup 9391  cr 11067  *cxr 11207   < clt 11208  cz 12529  cuz 12793  cli 15450  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ioc 13311  df-ico 13312  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-rest 17385  df-topgen 17406  df-top 22781  df-bases 22833  df-salg 46307  df-salgen 46311  df-smblfn 46694
This theorem is referenced by:  smflimsuplem8  46825
  Copyright terms: Public domain W3C validator