Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   GIF version

Theorem dihglblem3N 38311
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
3 simp11l 1276 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ HL)
43hllatd 36380 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ Lat)
5 simp12l 1278 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑆𝐵)
6 simp3 1130 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝑆)
75, 6sseldd 3965 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝐵)
8 simp11r 1277 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐻)
9 dihglblem.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
10 dihglblem.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
119, 10lhpbase 37014 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
128, 11syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐵)
13 dihglblem.l . . . . . . . . . . . 12 = (le‘𝐾)
14 dihglblem.m . . . . . . . . . . . 12 = (meet‘𝐾)
159, 13, 14latmle2 17675 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑣𝐵𝑊𝐵) → (𝑣 𝑊) 𝑊)
164, 7, 12, 15syl3anc 1363 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → (𝑣 𝑊) 𝑊)
17163expia 1113 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑣 𝑊) 𝑊))
18 breq1 5060 . . . . . . . . . 10 (𝑢 = (𝑣 𝑊) → (𝑢 𝑊 ↔ (𝑣 𝑊) 𝑊))
1918biimprcd 251 . . . . . . . . 9 ((𝑣 𝑊) 𝑊 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2017, 19syl6 35 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊)))
2120rexlimdv 3280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2221ss2rabdv 4049 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ {𝑢𝐵𝑢 𝑊})
232, 22eqsstrid 4012 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ {𝑢𝐵𝑢 𝑊})
24 dihglblem.i . . . . . . 7 𝐽 = ((DIsoB‘𝐾)‘𝑊)
259, 13, 10, 24dibdmN 38173 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
26253ad2ant1 1125 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
2723, 26sseqtrrd 4005 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ dom 𝐽)
28 dihglblem.g . . . . . 6 𝐺 = (glb‘𝐾)
299, 13, 14, 28, 10, 2dihglblem2aN 38309 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
30293adant3 1124 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ≠ ∅)
3128, 10, 24dibglbN 38182 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ⊆ dom 𝐽𝑇 ≠ ∅)) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
321, 27, 30, 31syl12anc 832 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
339, 13, 14, 28, 10, 2dihglblem2N 38310 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
34333adant2r 1171 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
3534fveq2d 6667 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑆)) = (𝐽‘(𝐺𝑇)))
36 simpl1 1183 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723sselda 3964 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → 𝑥 ∈ {𝑢𝐵𝑢 𝑊})
38 breq1 5060 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 𝑊𝑥 𝑊))
3938elrab 3677 . . . . . 6 (𝑥 ∈ {𝑢𝐵𝑢 𝑊} ↔ (𝑥𝐵𝑥 𝑊))
4037, 39sylib 219 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝑥𝐵𝑥 𝑊))
41 dihglblem.ih . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
429, 13, 10, 41, 24dihvalb 38253 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (𝐽𝑥))
4336, 40, 42syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐼𝑥) = (𝐽𝑥))
4443iineq2dv 4935 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = 𝑥𝑇 (𝐽𝑥))
4532, 35, 443eqtr4rd 2864 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = (𝐽‘(𝐺𝑆)))
46 simp1l 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
47 hlclat 36374 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4846, 47syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
49 simp2l 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
509, 28clatglbcl 17712 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
52 simp3 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) 𝑊)
539, 13, 10, 41, 24dihvalb 38253 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
541, 51, 52, 53syl12anc 832 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
5534fveq2d 6667 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
5645, 54, 553eqtr2rd 2860 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  {crab 3139  wss 3933  c0 4288   ciin 4911   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  glbcglb 17541  meetcmee 17543  Latclat 17643  CLatccla 17705  HLchlt 36366  LHypclh 37000  DIsoBcdib 38154  DIsoHcdih 38244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-p1 17638  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-lhyp 37004  df-laut 37005  df-ldil 37120  df-ltrn 37121  df-trl 37175  df-disoa 38045  df-dib 38155  df-dih 38245
This theorem is referenced by:  dihglblem3aN  38312
  Copyright terms: Public domain W3C validator