Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   GIF version

Theorem dihglblem3N 41314
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
3 simp11l 1285 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ HL)
43hllatd 39382 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ Lat)
5 simp12l 1287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑆𝐵)
6 simp3 1138 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝑆)
75, 6sseldd 3959 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝐵)
8 simp11r 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐻)
9 dihglblem.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
10 dihglblem.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
119, 10lhpbase 40017 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
128, 11syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐵)
13 dihglblem.l . . . . . . . . . . . 12 = (le‘𝐾)
14 dihglblem.m . . . . . . . . . . . 12 = (meet‘𝐾)
159, 13, 14latmle2 18475 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑣𝐵𝑊𝐵) → (𝑣 𝑊) 𝑊)
164, 7, 12, 15syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → (𝑣 𝑊) 𝑊)
17163expia 1121 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑣 𝑊) 𝑊))
18 breq1 5122 . . . . . . . . . 10 (𝑢 = (𝑣 𝑊) → (𝑢 𝑊 ↔ (𝑣 𝑊) 𝑊))
1918biimprcd 250 . . . . . . . . 9 ((𝑣 𝑊) 𝑊 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2017, 19syl6 35 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊)))
2120rexlimdv 3139 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2221ss2rabdv 4051 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ {𝑢𝐵𝑢 𝑊})
232, 22eqsstrid 3997 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ {𝑢𝐵𝑢 𝑊})
24 dihglblem.i . . . . . . 7 𝐽 = ((DIsoB‘𝐾)‘𝑊)
259, 13, 10, 24dibdmN 41176 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
26253ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
2723, 26sseqtrrd 3996 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ dom 𝐽)
28 dihglblem.g . . . . . 6 𝐺 = (glb‘𝐾)
299, 13, 14, 28, 10, 2dihglblem2aN 41312 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
30293adant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ≠ ∅)
3128, 10, 24dibglbN 41185 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ⊆ dom 𝐽𝑇 ≠ ∅)) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
321, 27, 30, 31syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
339, 13, 14, 28, 10, 2dihglblem2N 41313 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
34333adant2r 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
3534fveq2d 6880 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑆)) = (𝐽‘(𝐺𝑇)))
36 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723sselda 3958 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → 𝑥 ∈ {𝑢𝐵𝑢 𝑊})
38 breq1 5122 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 𝑊𝑥 𝑊))
3938elrab 3671 . . . . . 6 (𝑥 ∈ {𝑢𝐵𝑢 𝑊} ↔ (𝑥𝐵𝑥 𝑊))
4037, 39sylib 218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝑥𝐵𝑥 𝑊))
41 dihglblem.ih . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
429, 13, 10, 41, 24dihvalb 41256 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (𝐽𝑥))
4336, 40, 42syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐼𝑥) = (𝐽𝑥))
4443iineq2dv 4993 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = 𝑥𝑇 (𝐽𝑥))
4532, 35, 443eqtr4rd 2781 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = (𝐽‘(𝐺𝑆)))
46 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
47 hlclat 39376 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4846, 47syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
49 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
509, 28clatglbcl 18515 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
52 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) 𝑊)
539, 13, 10, 41, 24dihvalb 41256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
541, 51, 52, 53syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
5534fveq2d 6880 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
5645, 54, 553eqtr2rd 2777 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  wss 3926  c0 4308   ciin 4968   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  glbcglb 18322  meetcmee 18324  Latclat 18441  CLatccla 18508  HLchlt 39368  LHypclh 40003  DIsoBcdib 41157  DIsoHcdih 41247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-disoa 41048  df-dib 41158  df-dih 41248
This theorem is referenced by:  dihglblem3aN  41315
  Copyright terms: Public domain W3C validator