Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   GIF version

Theorem dihglblem3N 39758
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
3 simp11l 1284 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ HL)
43hllatd 37826 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ Lat)
5 simp12l 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑆𝐵)
6 simp3 1138 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝑆)
75, 6sseldd 3945 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝐵)
8 simp11r 1285 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐻)
9 dihglblem.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
10 dihglblem.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
119, 10lhpbase 38461 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
128, 11syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐵)
13 dihglblem.l . . . . . . . . . . . 12 = (le‘𝐾)
14 dihglblem.m . . . . . . . . . . . 12 = (meet‘𝐾)
159, 13, 14latmle2 18354 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑣𝐵𝑊𝐵) → (𝑣 𝑊) 𝑊)
164, 7, 12, 15syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → (𝑣 𝑊) 𝑊)
17163expia 1121 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑣 𝑊) 𝑊))
18 breq1 5108 . . . . . . . . . 10 (𝑢 = (𝑣 𝑊) → (𝑢 𝑊 ↔ (𝑣 𝑊) 𝑊))
1918biimprcd 249 . . . . . . . . 9 ((𝑣 𝑊) 𝑊 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2017, 19syl6 35 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊)))
2120rexlimdv 3150 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2221ss2rabdv 4033 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ {𝑢𝐵𝑢 𝑊})
232, 22eqsstrid 3992 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ {𝑢𝐵𝑢 𝑊})
24 dihglblem.i . . . . . . 7 𝐽 = ((DIsoB‘𝐾)‘𝑊)
259, 13, 10, 24dibdmN 39620 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
26253ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
2723, 26sseqtrrd 3985 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ dom 𝐽)
28 dihglblem.g . . . . . 6 𝐺 = (glb‘𝐾)
299, 13, 14, 28, 10, 2dihglblem2aN 39756 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
30293adant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ≠ ∅)
3128, 10, 24dibglbN 39629 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ⊆ dom 𝐽𝑇 ≠ ∅)) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
321, 27, 30, 31syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
339, 13, 14, 28, 10, 2dihglblem2N 39757 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
34333adant2r 1179 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
3534fveq2d 6846 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑆)) = (𝐽‘(𝐺𝑇)))
36 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723sselda 3944 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → 𝑥 ∈ {𝑢𝐵𝑢 𝑊})
38 breq1 5108 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 𝑊𝑥 𝑊))
3938elrab 3645 . . . . . 6 (𝑥 ∈ {𝑢𝐵𝑢 𝑊} ↔ (𝑥𝐵𝑥 𝑊))
4037, 39sylib 217 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝑥𝐵𝑥 𝑊))
41 dihglblem.ih . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
429, 13, 10, 41, 24dihvalb 39700 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (𝐽𝑥))
4336, 40, 42syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐼𝑥) = (𝐽𝑥))
4443iineq2dv 4979 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = 𝑥𝑇 (𝐽𝑥))
4532, 35, 443eqtr4rd 2787 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = (𝐽‘(𝐺𝑆)))
46 simp1l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
47 hlclat 37820 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4846, 47syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
49 simp2l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
509, 28clatglbcl 18394 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
52 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) 𝑊)
539, 13, 10, 41, 24dihvalb 39700 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
541, 51, 52, 53syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
5534fveq2d 6846 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
5645, 54, 553eqtr2rd 2783 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  wss 3910  c0 4282   ciin 4955   class class class wbr 5105  dom cdm 5633  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  glbcglb 18199  meetcmee 18201  Latclat 18320  CLatccla 18387  HLchlt 37812  LHypclh 38447  DIsoBcdib 39601  DIsoHcdih 39691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-disoa 39492  df-dib 39602  df-dih 39692
This theorem is referenced by:  dihglblem3aN  39759
  Copyright terms: Public domain W3C validator