Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   GIF version

Theorem dihglblem3N 41289
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
3 simp11l 1285 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ HL)
43hllatd 39357 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝐾 ∈ Lat)
5 simp12l 1287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑆𝐵)
6 simp3 1138 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝑆)
75, 6sseldd 3947 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑣𝐵)
8 simp11r 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐻)
9 dihglblem.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
10 dihglblem.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
119, 10lhpbase 39992 . . . . . . . . . . . 12 (𝑊𝐻𝑊𝐵)
128, 11syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → 𝑊𝐵)
13 dihglblem.l . . . . . . . . . . . 12 = (le‘𝐾)
14 dihglblem.m . . . . . . . . . . . 12 = (meet‘𝐾)
159, 13, 14latmle2 18424 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑣𝐵𝑊𝐵) → (𝑣 𝑊) 𝑊)
164, 7, 12, 15syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵𝑣𝑆) → (𝑣 𝑊) 𝑊)
17163expia 1121 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑣 𝑊) 𝑊))
18 breq1 5110 . . . . . . . . . 10 (𝑢 = (𝑣 𝑊) → (𝑢 𝑊 ↔ (𝑣 𝑊) 𝑊))
1918biimprcd 250 . . . . . . . . 9 ((𝑣 𝑊) 𝑊 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2017, 19syl6 35 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (𝑣𝑆 → (𝑢 = (𝑣 𝑊) → 𝑢 𝑊)))
2120rexlimdv 3132 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑢𝐵) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) → 𝑢 𝑊))
2221ss2rabdv 4039 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ {𝑢𝐵𝑢 𝑊})
232, 22eqsstrid 3985 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ {𝑢𝐵𝑢 𝑊})
24 dihglblem.i . . . . . . 7 𝐽 = ((DIsoB‘𝐾)‘𝑊)
259, 13, 10, 24dibdmN 41151 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
26253ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → dom 𝐽 = {𝑢𝐵𝑢 𝑊})
2723, 26sseqtrrd 3984 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ⊆ dom 𝐽)
28 dihglblem.g . . . . . 6 𝐺 = (glb‘𝐾)
299, 13, 14, 28, 10, 2dihglblem2aN 41287 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
30293adant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑇 ≠ ∅)
3128, 10, 24dibglbN 41160 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ⊆ dom 𝐽𝑇 ≠ ∅)) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
321, 27, 30, 31syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑇)) = 𝑥𝑇 (𝐽𝑥))
339, 13, 14, 28, 10, 2dihglblem2N 41288 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
34333adant2r 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
3534fveq2d 6862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐽‘(𝐺𝑆)) = (𝐽‘(𝐺𝑇)))
36 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723sselda 3946 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → 𝑥 ∈ {𝑢𝐵𝑢 𝑊})
38 breq1 5110 . . . . . . 7 (𝑢 = 𝑥 → (𝑢 𝑊𝑥 𝑊))
3938elrab 3659 . . . . . 6 (𝑥 ∈ {𝑢𝐵𝑢 𝑊} ↔ (𝑥𝐵𝑥 𝑊))
4037, 39sylib 218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝑥𝐵𝑥 𝑊))
41 dihglblem.ih . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
429, 13, 10, 41, 24dihvalb 41231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵𝑥 𝑊)) → (𝐼𝑥) = (𝐽𝑥))
4336, 40, 42syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑇) → (𝐼𝑥) = (𝐽𝑥))
4443iineq2dv 4981 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = 𝑥𝑇 (𝐽𝑥))
4532, 35, 443eqtr4rd 2775 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑥𝑇 (𝐼𝑥) = (𝐽‘(𝐺𝑆)))
46 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
47 hlclat 39351 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
4846, 47syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
49 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
509, 28clatglbcl 18464 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
52 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) 𝑊)
539, 13, 10, 41, 24dihvalb 41231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
541, 51, 52, 53syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐽‘(𝐺𝑆)))
5534fveq2d 6862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
5645, 54, 553eqtr2rd 2771 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  wss 3914  c0 4296   ciin 4956   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  glbcglb 18271  meetcmee 18273  Latclat 18390  CLatccla 18457  HLchlt 39343  LHypclh 39978  DIsoBcdib 41132  DIsoHcdih 41222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-disoa 41023  df-dib 41133  df-dih 41223
This theorem is referenced by:  dihglblem3aN  41290
  Copyright terms: Public domain W3C validator