![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccvonmbllem | Structured version Visualization version GIF version |
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
iccvonmbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
iccvonmbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
iccvonmbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
iccvonmbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
iccvonmbllem.c | ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
iccvonmbllem.d | ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
Ref | Expression |
---|---|
iccvonmbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccvonmbllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) | |
2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))))) |
3 | iccvonmbllem.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
4 | 3 | adantr 466 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
5 | 4 | mptexd 6630 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) ∈ V) |
6 | 2, 5 | fvmpt2d 6434 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
7 | iccvonmbllem.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
8 | 7 | ffvelrnda 6501 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
9 | 8 | adantlr 694 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
10 | nnrecre 11259 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
11 | 10 | ad2antlr 706 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
12 | 9, 11 | resubcld 10660 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐴‘𝑖) − (1 / 𝑛)) ∈ ℝ) |
13 | 6, 12 | fvmpt2d 6434 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
14 | 13 | an32s 631 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
15 | iccvonmbllem.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) | |
16 | 15 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))))) |
17 | 4 | mptexd 6630 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) ∈ V) |
18 | 16, 17 | fvmpt2d 6434 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
19 | iccvonmbllem.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
20 | 19 | ffvelrnda 6501 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
21 | 20 | adantlr 694 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
22 | 21, 11 | readdcld 10271 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐵‘𝑖) + (1 / 𝑛)) ∈ ℝ) |
23 | 18, 22 | fvmpt2d 6434 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
24 | 23 | an32s 631 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
25 | 14, 24 | oveq12d 6810 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
26 | 25 | iineq2dv 4677 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
27 | 8, 20 | iooiinicc 40284 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛))) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
28 | 26, 27 | eqtrd 2805 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
29 | 28 | ixpeq2dva 8077 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
30 | 29 | eqcomd 2777 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
31 | eqidd 2772 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) | |
32 | nnn0 40108 | . . . . 5 ⊢ ℕ ≠ ∅ | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ≠ ∅) |
34 | ixpiin 8088 | . . . 4 ⊢ (ℕ ≠ ∅ → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
36 | 30, 31, 35 | 3eqtr3d 2813 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
37 | iccvonmbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
38 | 3, 37 | dmovnsal 41343 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
39 | nnct 12984 | . . . 4 ⊢ ℕ ≼ ω | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
41 | eqid 2771 | . . . . . . 7 ⊢ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) | |
42 | 12, 41 | fmptd 6526 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ) |
43 | ressxr 10285 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
44 | 43 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ⊆ ℝ*) |
45 | 42, 44 | fssd 6195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*) |
46 | 6 | feq1d 6168 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)) |
47 | 45, 46 | mpbird 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ*) |
48 | eqid 2771 | . . . . . . 7 ⊢ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) | |
49 | 22, 48 | fmptd 6526 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ) |
50 | 49, 44 | fssd 6195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*) |
51 | 18 | feq1d 6168 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)) |
52 | 50, 51 | mpbird 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):𝑋⟶ℝ*) |
53 | 4, 37, 47, 52 | ioovonmbl 41408 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
54 | 38, 40, 33, 53 | saliincl 41059 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
55 | 36, 54 | eqeltrd 2850 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 ∩ ciin 4655 class class class wbr 4786 ↦ cmpt 4863 dom cdm 5249 ⟶wf 6025 ‘cfv 6029 (class class class)co 6792 ωcom 7212 Xcixp 8062 ≼ cdom 8107 Fincfn 8109 ℝcr 10137 1c1 10139 + caddc 10141 ℝ*cxr 10275 − cmin 10468 / cdiv 10886 ℕcn 11222 (,)cioo 12376 [,]cicc 12379 volncvoln 41269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cc 9459 ax-ac2 9487 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-ac 9139 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11496 df-z 11581 df-dec 11697 df-uz 11890 df-q 11993 df-rp 12032 df-xneg 12147 df-xadd 12148 df-xmul 12149 df-ioo 12380 df-ico 12382 df-icc 12383 df-fz 12530 df-fzo 12670 df-fl 12797 df-seq 13005 df-exp 13064 df-hash 13318 df-cj 14043 df-re 14044 df-im 14045 df-sqrt 14179 df-abs 14180 df-clim 14423 df-rlim 14424 df-sum 14621 df-prod 14839 df-struct 16062 df-ndx 16063 df-slot 16064 df-base 16066 df-sets 16067 df-ress 16068 df-plusg 16158 df-mulr 16159 df-starv 16160 df-sca 16161 df-vsca 16162 df-ip 16163 df-tset 16164 df-ple 16165 df-ds 16168 df-unif 16169 df-hom 16170 df-cco 16171 df-rest 16287 df-topn 16288 df-0g 16306 df-gsum 16307 df-topgen 16308 df-prds 16312 df-pws 16314 df-mgm 17446 df-sgrp 17488 df-mnd 17499 df-mhm 17539 df-submnd 17540 df-grp 17629 df-minusg 17630 df-sbg 17631 df-subg 17795 df-ghm 17862 df-cntz 17953 df-cmn 18398 df-abl 18399 df-mgp 18694 df-ur 18706 df-ring 18753 df-cring 18754 df-oppr 18827 df-dvdsr 18845 df-unit 18846 df-invr 18876 df-dvr 18887 df-rnghom 18921 df-drng 18955 df-field 18956 df-subrg 18984 df-abv 19023 df-staf 19051 df-srng 19052 df-lmod 19071 df-lss 19139 df-lmhm 19231 df-lvec 19312 df-sra 19383 df-rgmod 19384 df-psmet 19949 df-xmet 19950 df-met 19951 df-bl 19952 df-mopn 19953 df-cnfld 19958 df-refld 20164 df-phl 20184 df-dsmm 20289 df-frlm 20304 df-top 20915 df-topon 20932 df-topsp 20954 df-bases 20967 df-cmp 21407 df-xms 22341 df-ms 22342 df-nm 22603 df-ngp 22604 df-tng 22605 df-nrg 22606 df-nlm 22607 df-clm 23078 df-cph 23183 df-tch 23184 df-rrx 23388 df-ovol 23448 df-vol 23449 df-salg 41043 df-sumge0 41094 df-mea 41181 df-ome 41221 df-caragen 41223 df-ovoln 41268 df-voln 41270 |
This theorem is referenced by: iccvonmbl 41410 |
Copyright terms: Public domain | W3C validator |