Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccvonmbllem | Structured version Visualization version GIF version |
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
iccvonmbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
iccvonmbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
iccvonmbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
iccvonmbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
iccvonmbllem.c | ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
iccvonmbllem.d | ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
Ref | Expression |
---|---|
iccvonmbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccvonmbllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) | |
2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))))) |
3 | iccvonmbllem.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
4 | 3 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
5 | 4 | mptexd 7097 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) ∈ V) |
6 | 2, 5 | fvmpt2d 6885 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
7 | iccvonmbllem.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
8 | 7 | ffvelrnda 6958 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
9 | 8 | adantlr 712 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
10 | nnrecre 12026 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
11 | 10 | ad2antlr 724 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
12 | 9, 11 | resubcld 11414 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐴‘𝑖) − (1 / 𝑛)) ∈ ℝ) |
13 | 6, 12 | fvmpt2d 6885 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
14 | 13 | an32s 649 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
15 | iccvonmbllem.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) | |
16 | 15 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))))) |
17 | 4 | mptexd 7097 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) ∈ V) |
18 | 16, 17 | fvmpt2d 6885 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
19 | iccvonmbllem.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
20 | 19 | ffvelrnda 6958 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
21 | 20 | adantlr 712 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
22 | 21, 11 | readdcld 11015 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐵‘𝑖) + (1 / 𝑛)) ∈ ℝ) |
23 | 18, 22 | fvmpt2d 6885 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
24 | 23 | an32s 649 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
25 | 14, 24 | oveq12d 7290 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
26 | 25 | iineq2dv 4955 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
27 | 8, 20 | iooiinicc 43062 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛))) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
28 | 26, 27 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
29 | 28 | ixpeq2dva 8692 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
30 | 29 | eqcomd 2746 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
31 | eqidd 2741 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) | |
32 | nnn0 42899 | . . . . 5 ⊢ ℕ ≠ ∅ | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ≠ ∅) |
34 | ixpiin 8704 | . . . 4 ⊢ (ℕ ≠ ∅ → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
36 | 30, 31, 35 | 3eqtr3d 2788 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
37 | iccvonmbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
38 | 3, 37 | dmovnsal 44132 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
39 | nnct 13712 | . . . 4 ⊢ ℕ ≼ ω | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
41 | 12 | fmpttd 6986 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ) |
42 | ressxr 11030 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
43 | 42 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ⊆ ℝ*) |
44 | 41, 43 | fssd 6616 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*) |
45 | 6 | feq1d 6583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)) |
46 | 44, 45 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ*) |
47 | 22 | fmpttd 6986 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ) |
48 | 47, 43 | fssd 6616 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*) |
49 | 18 | feq1d 6583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)) |
50 | 48, 49 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):𝑋⟶ℝ*) |
51 | 4, 37, 46, 50 | ioovonmbl 44197 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
52 | 38, 40, 33, 51 | saliincl 43848 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
53 | 36, 52 | eqeltrd 2841 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 ∩ ciin 4931 class class class wbr 5079 ↦ cmpt 5162 dom cdm 5590 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 ωcom 7707 Xcixp 8677 ≼ cdom 8723 Fincfn 8725 ℝcr 10881 1c1 10883 + caddc 10885 ℝ*cxr 11019 − cmin 11216 / cdiv 11643 ℕcn 11984 (,)cioo 13090 [,]cicc 13093 volncvoln 44058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 ax-cc 10202 ax-ac2 10230 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 ax-addf 10961 ax-mulf 10962 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-2o 8290 df-oadd 8293 df-omul 8294 df-er 8490 df-map 8609 df-pm 8610 df-ixp 8678 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-fi 9158 df-sup 9189 df-inf 9190 df-oi 9257 df-dju 9670 df-card 9708 df-acn 9711 df-ac 9883 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-q 12700 df-rp 12742 df-xneg 12859 df-xadd 12860 df-xmul 12861 df-ioo 13094 df-ico 13096 df-icc 13097 df-fz 13251 df-fzo 13394 df-fl 13523 df-seq 13733 df-exp 13794 df-hash 14056 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-clim 15208 df-rlim 15209 df-sum 15409 df-prod 15627 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-starv 16988 df-sca 16989 df-vsca 16990 df-ip 16991 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-hom 16997 df-cco 16998 df-rest 17144 df-topn 17145 df-0g 17163 df-gsum 17164 df-topgen 17165 df-prds 17169 df-pws 17171 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-mhm 18441 df-submnd 18442 df-grp 18591 df-minusg 18592 df-sbg 18593 df-subg 18763 df-ghm 18843 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-cring 19797 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 df-dvr 19936 df-rnghom 19970 df-drng 20004 df-field 20005 df-subrg 20033 df-abv 20088 df-staf 20116 df-srng 20117 df-lmod 20136 df-lss 20205 df-lmhm 20295 df-lvec 20376 df-sra 20445 df-rgmod 20446 df-psmet 20600 df-xmet 20601 df-met 20602 df-bl 20603 df-mopn 20604 df-cnfld 20609 df-refld 20821 df-phl 20842 df-dsmm 20950 df-frlm 20965 df-top 22054 df-topon 22071 df-topsp 22093 df-bases 22107 df-cmp 22549 df-xms 23484 df-ms 23485 df-nm 23749 df-ngp 23750 df-tng 23751 df-nrg 23752 df-nlm 23753 df-clm 24237 df-cph 24343 df-tcph 24344 df-rrx 24560 df-ovol 24639 df-vol 24640 df-salg 43832 df-sumge0 43883 df-mea 43970 df-ome 44010 df-caragen 44012 df-ovoln 44057 df-voln 44059 |
This theorem is referenced by: iccvonmbl 44199 |
Copyright terms: Public domain | W3C validator |