Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbllem Structured version   Visualization version   GIF version

Theorem iccvonmbllem 46707
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbllem.x (𝜑𝑋 ∈ Fin)
iccvonmbllem.s 𝑆 = dom (voln‘𝑋)
iccvonmbllem.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbllem.b (𝜑𝐵:𝑋⟶ℝ)
iccvonmbllem.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
iccvonmbllem.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
Assertion
Ref Expression
iccvonmbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑖   𝐷,𝑖   𝑆,𝑛   𝑖,𝑋,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝐶(𝑛)   𝐷(𝑛)   𝑆(𝑖)

Proof of Theorem iccvonmbllem
StepHypRef Expression
1 iccvonmbllem.c . . . . . . . . . . . 12 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
21a1i 11 . . . . . . . . . . 11 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))))
3 iccvonmbllem.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
43adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
54mptexd 7216 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) ∈ V)
62, 5fvmpt2d 6999 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
7 iccvonmbllem.a . . . . . . . . . . . . 13 (𝜑𝐴:𝑋⟶ℝ)
87ffvelcdmda 7074 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
98adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
10 nnrecre 12282 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11resubcld 11665 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐴𝑖) − (1 / 𝑛)) ∈ ℝ)
136, 12fvmpt2d 6999 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
1413an32s 652 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
15 iccvonmbllem.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
1615a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))))
174mptexd 7216 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) ∈ V)
1816, 17fvmpt2d 6999 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
19 iccvonmbllem.b . . . . . . . . . . . . 13 (𝜑𝐵:𝑋⟶ℝ)
2019ffvelcdmda 7074 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2120adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2221, 11readdcld 11264 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐵𝑖) + (1 / 𝑛)) ∈ ℝ)
2318, 22fvmpt2d 6999 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2423an32s 652 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2514, 24oveq12d 7423 . . . . . . 7 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
2625iineq2dv 4993 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
278, 20iooiinicc 45571 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))) = ((𝐴𝑖)[,](𝐵𝑖)))
2826, 27eqtrd 2770 . . . . 5 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = ((𝐴𝑖)[,](𝐵𝑖)))
2928ixpeq2dva 8926 . . . 4 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
3029eqcomd 2741 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
31 eqidd 2736 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
32 nnn0 45405 . . . . 5 ℕ ≠ ∅
3332a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
34 ixpiin 8938 . . . 4 (ℕ ≠ ∅ → X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3533, 34syl 17 . . 3 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3630, 31, 353eqtr3d 2778 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
37 iccvonmbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
383, 37dmovnsal 46641 . . 3 (𝜑𝑆 ∈ SAlg)
39 nnct 13999 . . . 4 ℕ ≼ ω
4039a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
4112fmpttd 7105 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ)
42 ressxr 11279 . . . . . . 7 ℝ ⊆ ℝ*
4342a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℝ ⊆ ℝ*)
4441, 43fssd 6723 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)
456feq1d 6690 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*))
4644, 45mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ*)
4722fmpttd 7105 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ)
4847, 43fssd 6723 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)
4918feq1d 6690 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*))
5048, 49mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛):𝑋⟶ℝ*)
514, 37, 46, 50ioovonmbl 46706 . . 3 ((𝜑𝑛 ∈ ℕ) → X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5238, 40, 33, 51saliincl 46356 . 2 (𝜑 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5336, 52eqeltrd 2834 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  wss 3926  c0 4308   ciin 4968   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  Xcixp 8911  cdom 8957  Fincfn 8959  cr 11128  1c1 11130   + caddc 11132  *cxr 11268  cmin 11466   / cdiv 11894  cn 12240  (,)cioo 13362  [,]cicc 13365  volncvoln 46567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-abv 20769  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-lmhm 20980  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-refld 21565  df-phl 21586  df-dsmm 21692  df-frlm 21707  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cmp 23325  df-xms 24259  df-ms 24260  df-nm 24521  df-ngp 24522  df-tng 24523  df-nrg 24524  df-nlm 24525  df-clm 25014  df-cph 25120  df-tcph 25121  df-rrx 25337  df-ovol 25417  df-vol 25418  df-salg 46338  df-sumge0 46392  df-mea 46479  df-ome 46519  df-caragen 46521  df-ovoln 46566  df-voln 46568
This theorem is referenced by:  iccvonmbl  46708
  Copyright terms: Public domain W3C validator