Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbllem Structured version   Visualization version   GIF version

Theorem iccvonmbllem 46634
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbllem.x (𝜑𝑋 ∈ Fin)
iccvonmbllem.s 𝑆 = dom (voln‘𝑋)
iccvonmbllem.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbllem.b (𝜑𝐵:𝑋⟶ℝ)
iccvonmbllem.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
iccvonmbllem.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
Assertion
Ref Expression
iccvonmbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑖   𝐷,𝑖   𝑆,𝑛   𝑖,𝑋,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝐶(𝑛)   𝐷(𝑛)   𝑆(𝑖)

Proof of Theorem iccvonmbllem
StepHypRef Expression
1 iccvonmbllem.c . . . . . . . . . . . 12 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
21a1i 11 . . . . . . . . . . 11 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))))
3 iccvonmbllem.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
43adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
54mptexd 7244 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) ∈ V)
62, 5fvmpt2d 7029 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
7 iccvonmbllem.a . . . . . . . . . . . . 13 (𝜑𝐴:𝑋⟶ℝ)
87ffvelcdmda 7104 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
98adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
10 nnrecre 12306 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11resubcld 11689 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐴𝑖) − (1 / 𝑛)) ∈ ℝ)
136, 12fvmpt2d 7029 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
1413an32s 652 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
15 iccvonmbllem.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
1615a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))))
174mptexd 7244 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) ∈ V)
1816, 17fvmpt2d 7029 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
19 iccvonmbllem.b . . . . . . . . . . . . 13 (𝜑𝐵:𝑋⟶ℝ)
2019ffvelcdmda 7104 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2120adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2221, 11readdcld 11288 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐵𝑖) + (1 / 𝑛)) ∈ ℝ)
2318, 22fvmpt2d 7029 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2423an32s 652 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2514, 24oveq12d 7449 . . . . . . 7 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
2625iineq2dv 5022 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
278, 20iooiinicc 45495 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))) = ((𝐴𝑖)[,](𝐵𝑖)))
2826, 27eqtrd 2775 . . . . 5 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = ((𝐴𝑖)[,](𝐵𝑖)))
2928ixpeq2dva 8951 . . . 4 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
3029eqcomd 2741 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
31 eqidd 2736 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
32 nnn0 45328 . . . . 5 ℕ ≠ ∅
3332a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
34 ixpiin 8963 . . . 4 (ℕ ≠ ∅ → X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3533, 34syl 17 . . 3 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3630, 31, 353eqtr3d 2783 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
37 iccvonmbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
383, 37dmovnsal 46568 . . 3 (𝜑𝑆 ∈ SAlg)
39 nnct 14019 . . . 4 ℕ ≼ ω
4039a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
4112fmpttd 7135 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ)
42 ressxr 11303 . . . . . . 7 ℝ ⊆ ℝ*
4342a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℝ ⊆ ℝ*)
4441, 43fssd 6754 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)
456feq1d 6721 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*))
4644, 45mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ*)
4722fmpttd 7135 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ)
4847, 43fssd 6754 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)
4918feq1d 6721 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*))
5048, 49mpbird 257 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛):𝑋⟶ℝ*)
514, 37, 46, 50ioovonmbl 46633 . . 3 ((𝜑𝑛 ∈ ℕ) → X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5238, 40, 33, 51saliincl 46283 . 2 (𝜑 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5336, 52eqeltrd 2839 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339   ciin 4997   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  Xcixp 8936  cdom 8982  Fincfn 8984  cr 11152  1c1 11154   + caddc 11156  *cxr 11292  cmin 11490   / cdiv 11918  cn 12264  (,)cioo 13384  [,]cicc 13387  volncvoln 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-abv 20827  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-refld 21641  df-phl 21662  df-dsmm 21770  df-frlm 21785  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cmp 23411  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-tng 24613  df-nrg 24614  df-nlm 24615  df-clm 25110  df-cph 25216  df-tcph 25217  df-rrx 25433  df-ovol 25513  df-vol 25514  df-salg 46265  df-sumge0 46319  df-mea 46406  df-ome 46446  df-caragen 46448  df-ovoln 46493  df-voln 46495
This theorem is referenced by:  iccvonmbl  46635
  Copyright terms: Public domain W3C validator