Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbllem Structured version   Visualization version   GIF version

Theorem iccvonmbllem 41409
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbllem.x (𝜑𝑋 ∈ Fin)
iccvonmbllem.s 𝑆 = dom (voln‘𝑋)
iccvonmbllem.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbllem.b (𝜑𝐵:𝑋⟶ℝ)
iccvonmbllem.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
iccvonmbllem.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
Assertion
Ref Expression
iccvonmbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑖   𝐷,𝑖   𝑆,𝑛   𝑖,𝑋,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝐶(𝑛)   𝐷(𝑛)   𝑆(𝑖)

Proof of Theorem iccvonmbllem
StepHypRef Expression
1 iccvonmbllem.c . . . . . . . . . . . 12 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
21a1i 11 . . . . . . . . . . 11 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))))
3 iccvonmbllem.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
43adantr 466 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
54mptexd 6630 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) ∈ V)
62, 5fvmpt2d 6434 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
7 iccvonmbllem.a . . . . . . . . . . . . 13 (𝜑𝐴:𝑋⟶ℝ)
87ffvelrnda 6501 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
98adantlr 694 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
10 nnrecre 11259 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 706 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11resubcld 10660 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐴𝑖) − (1 / 𝑛)) ∈ ℝ)
136, 12fvmpt2d 6434 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
1413an32s 631 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
15 iccvonmbllem.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
1615a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))))
174mptexd 6630 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) ∈ V)
1816, 17fvmpt2d 6434 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
19 iccvonmbllem.b . . . . . . . . . . . . 13 (𝜑𝐵:𝑋⟶ℝ)
2019ffvelrnda 6501 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2120adantlr 694 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2221, 11readdcld 10271 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐵𝑖) + (1 / 𝑛)) ∈ ℝ)
2318, 22fvmpt2d 6434 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2423an32s 631 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2514, 24oveq12d 6810 . . . . . . 7 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
2625iineq2dv 4677 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
278, 20iooiinicc 40284 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))) = ((𝐴𝑖)[,](𝐵𝑖)))
2826, 27eqtrd 2805 . . . . 5 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = ((𝐴𝑖)[,](𝐵𝑖)))
2928ixpeq2dva 8077 . . . 4 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
3029eqcomd 2777 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
31 eqidd 2772 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
32 nnn0 40108 . . . . 5 ℕ ≠ ∅
3332a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
34 ixpiin 8088 . . . 4 (ℕ ≠ ∅ → X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3533, 34syl 17 . . 3 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3630, 31, 353eqtr3d 2813 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
37 iccvonmbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
383, 37dmovnsal 41343 . . 3 (𝜑𝑆 ∈ SAlg)
39 nnct 12984 . . . 4 ℕ ≼ ω
4039a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
41 eqid 2771 . . . . . . 7 (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))
4212, 41fmptd 6526 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ)
43 ressxr 10285 . . . . . . 7 ℝ ⊆ ℝ*
4443a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℝ ⊆ ℝ*)
4542, 44fssd 6195 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)
466feq1d 6168 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*))
4745, 46mpbird 247 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ*)
48 eqid 2771 . . . . . . 7 (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))
4922, 48fmptd 6526 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ)
5049, 44fssd 6195 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)
5118feq1d 6168 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*))
5250, 51mpbird 247 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛):𝑋⟶ℝ*)
534, 37, 47, 52ioovonmbl 41408 . . 3 ((𝜑𝑛 ∈ ℕ) → X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5438, 40, 33, 53saliincl 41059 . 2 (𝜑 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5536, 54eqeltrd 2850 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  wss 3723  c0 4063   ciin 4655   class class class wbr 4786  cmpt 4863  dom cdm 5249  wf 6025  cfv 6029  (class class class)co 6792  ωcom 7212  Xcixp 8062  cdom 8107  Fincfn 8109  cr 10137  1c1 10139   + caddc 10141  *cxr 10275  cmin 10468   / cdiv 10886  cn 11222  (,)cioo 12376  [,]cicc 12379  volncvoln 41269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-ac2 9487  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-ac 9139  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11496  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12147  df-xadd 12148  df-xmul 12149  df-ioo 12380  df-ico 12382  df-icc 12383  df-fz 12530  df-fzo 12670  df-fl 12797  df-seq 13005  df-exp 13064  df-hash 13318  df-cj 14043  df-re 14044  df-im 14045  df-sqrt 14179  df-abs 14180  df-clim 14423  df-rlim 14424  df-sum 14621  df-prod 14839  df-struct 16062  df-ndx 16063  df-slot 16064  df-base 16066  df-sets 16067  df-ress 16068  df-plusg 16158  df-mulr 16159  df-starv 16160  df-sca 16161  df-vsca 16162  df-ip 16163  df-tset 16164  df-ple 16165  df-ds 16168  df-unif 16169  df-hom 16170  df-cco 16171  df-rest 16287  df-topn 16288  df-0g 16306  df-gsum 16307  df-topgen 16308  df-prds 16312  df-pws 16314  df-mgm 17446  df-sgrp 17488  df-mnd 17499  df-mhm 17539  df-submnd 17540  df-grp 17629  df-minusg 17630  df-sbg 17631  df-subg 17795  df-ghm 17862  df-cntz 17953  df-cmn 18398  df-abl 18399  df-mgp 18694  df-ur 18706  df-ring 18753  df-cring 18754  df-oppr 18827  df-dvdsr 18845  df-unit 18846  df-invr 18876  df-dvr 18887  df-rnghom 18921  df-drng 18955  df-field 18956  df-subrg 18984  df-abv 19023  df-staf 19051  df-srng 19052  df-lmod 19071  df-lss 19139  df-lmhm 19231  df-lvec 19312  df-sra 19383  df-rgmod 19384  df-psmet 19949  df-xmet 19950  df-met 19951  df-bl 19952  df-mopn 19953  df-cnfld 19958  df-refld 20164  df-phl 20184  df-dsmm 20289  df-frlm 20304  df-top 20915  df-topon 20932  df-topsp 20954  df-bases 20967  df-cmp 21407  df-xms 22341  df-ms 22342  df-nm 22603  df-ngp 22604  df-tng 22605  df-nrg 22606  df-nlm 22607  df-clm 23078  df-cph 23183  df-tch 23184  df-rrx 23388  df-ovol 23448  df-vol 23449  df-salg 41043  df-sumge0 41094  df-mea 41181  df-ome 41221  df-caragen 41223  df-ovoln 41268  df-voln 41270
This theorem is referenced by:  iccvonmbl  41410
  Copyright terms: Public domain W3C validator