Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbllem Structured version   Visualization version   GIF version

Theorem iccvonmbllem 41374
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbllem.x (𝜑𝑋 ∈ Fin)
iccvonmbllem.s 𝑆 = dom (voln‘𝑋)
iccvonmbllem.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbllem.b (𝜑𝐵:𝑋⟶ℝ)
iccvonmbllem.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
iccvonmbllem.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
Assertion
Ref Expression
iccvonmbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑖   𝐷,𝑖   𝑆,𝑛   𝑖,𝑋,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝐶(𝑛)   𝐷(𝑛)   𝑆(𝑖)

Proof of Theorem iccvonmbllem
StepHypRef Expression
1 iccvonmbllem.c . . . . . . . . . . . 12 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
21a1i 11 . . . . . . . . . . 11 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))))
3 iccvonmbllem.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
43adantr 468 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
54mptexd 6712 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) ∈ V)
62, 5fvmpt2d 6514 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
7 iccvonmbllem.a . . . . . . . . . . . . 13 (𝜑𝐴:𝑋⟶ℝ)
87ffvelrnda 6581 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
98adantlr 697 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
10 nnrecre 11343 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 709 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11resubcld 10743 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐴𝑖) − (1 / 𝑛)) ∈ ℝ)
136, 12fvmpt2d 6514 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
1413an32s 634 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
15 iccvonmbllem.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
1615a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))))
174mptexd 6712 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) ∈ V)
1816, 17fvmpt2d 6514 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
19 iccvonmbllem.b . . . . . . . . . . . . 13 (𝜑𝐵:𝑋⟶ℝ)
2019ffvelrnda 6581 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2120adantlr 697 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2221, 11readdcld 10354 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐵𝑖) + (1 / 𝑛)) ∈ ℝ)
2318, 22fvmpt2d 6514 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2423an32s 634 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2514, 24oveq12d 6892 . . . . . . 7 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
2625iineq2dv 4735 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
278, 20iooiinicc 40249 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))) = ((𝐴𝑖)[,](𝐵𝑖)))
2826, 27eqtrd 2840 . . . . 5 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = ((𝐴𝑖)[,](𝐵𝑖)))
2928ixpeq2dva 8160 . . . 4 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
3029eqcomd 2812 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
31 eqidd 2807 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
32 nnn0 40075 . . . . 5 ℕ ≠ ∅
3332a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
34 ixpiin 8171 . . . 4 (ℕ ≠ ∅ → X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3533, 34syl 17 . . 3 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3630, 31, 353eqtr3d 2848 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
37 iccvonmbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
383, 37dmovnsal 41308 . . 3 (𝜑𝑆 ∈ SAlg)
39 nnct 13004 . . . 4 ℕ ≼ ω
4039a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
4112fmpttd 6607 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ)
42 ressxr 10368 . . . . . . 7 ℝ ⊆ ℝ*
4342a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℝ ⊆ ℝ*)
4441, 43fssd 6270 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)
456feq1d 6241 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*))
4644, 45mpbird 248 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ*)
4722fmpttd 6607 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ)
4847, 43fssd 6270 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)
4918feq1d 6241 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*))
5048, 49mpbird 248 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛):𝑋⟶ℝ*)
514, 37, 46, 50ioovonmbl 41373 . . 3 ((𝜑𝑛 ∈ ℕ) → X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5238, 40, 33, 51saliincl 41024 . 2 (𝜑 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5336, 52eqeltrd 2885 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  wne 2978  Vcvv 3391  wss 3769  c0 4116   ciin 4713   class class class wbr 4844  cmpt 4923  dom cdm 5311  wf 6097  cfv 6101  (class class class)co 6874  ωcom 7295  Xcixp 8145  cdom 8190  Fincfn 8192  cr 10220  1c1 10222   + caddc 10224  *cxr 10358  cmin 10551   / cdiv 10969  cn 11305  (,)cioo 12393  [,]cicc 12396  volncvoln 41234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cc 9542  ax-ac2 9570  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300  ax-mulf 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-disj 4813  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-of 7127  df-om 7296  df-1st 7398  df-2nd 7399  df-supp 7530  df-tpos 7587  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-omul 7801  df-er 7979  df-map 8094  df-pm 8095  df-ixp 8146  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-fsupp 8515  df-fi 8556  df-sup 8587  df-inf 8588  df-oi 8654  df-card 9048  df-acn 9051  df-ac 9222  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-q 12008  df-rp 12047  df-xneg 12162  df-xadd 12163  df-xmul 12164  df-ioo 12397  df-ico 12399  df-icc 12400  df-fz 12550  df-fzo 12690  df-fl 12817  df-seq 13025  df-exp 13084  df-hash 13338  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-clim 14442  df-rlim 14443  df-sum 14640  df-prod 14857  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-starv 16168  df-sca 16169  df-vsca 16170  df-ip 16171  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-hom 16177  df-cco 16178  df-rest 16288  df-topn 16289  df-0g 16307  df-gsum 16308  df-topgen 16309  df-prds 16313  df-pws 16315  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-mhm 17540  df-submnd 17541  df-grp 17630  df-minusg 17631  df-sbg 17632  df-subg 17793  df-ghm 17860  df-cntz 17951  df-cmn 18396  df-abl 18397  df-mgp 18692  df-ur 18704  df-ring 18751  df-cring 18752  df-oppr 18825  df-dvdsr 18843  df-unit 18844  df-invr 18874  df-dvr 18885  df-rnghom 18919  df-drng 18953  df-field 18954  df-subrg 18982  df-abv 19021  df-staf 19049  df-srng 19050  df-lmod 19069  df-lss 19137  df-lmhm 19229  df-lvec 19310  df-sra 19381  df-rgmod 19382  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-cnfld 19955  df-refld 20160  df-phl 20181  df-dsmm 20286  df-frlm 20301  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cmp 21404  df-xms 22338  df-ms 22339  df-nm 22600  df-ngp 22601  df-tng 22602  df-nrg 22603  df-nlm 22604  df-clm 23075  df-cph 23180  df-tch 23181  df-rrx 23385  df-ovol 23445  df-vol 23446  df-salg 41008  df-sumge0 41059  df-mea 41146  df-ome 41186  df-caragen 41188  df-ovoln 41233  df-voln 41235
This theorem is referenced by:  iccvonmbl  41375
  Copyright terms: Public domain W3C validator