![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccvonmbllem | Structured version Visualization version GIF version |
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
iccvonmbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
iccvonmbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
iccvonmbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
iccvonmbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
iccvonmbllem.c | ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
iccvonmbllem.d | ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
Ref | Expression |
---|---|
iccvonmbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccvonmbllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) | |
2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))))) |
3 | iccvonmbllem.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
4 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
5 | 4 | mptexd 7261 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) ∈ V) |
6 | 2, 5 | fvmpt2d 7042 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
7 | iccvonmbllem.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
8 | 7 | ffvelcdmda 7118 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
9 | 8 | adantlr 714 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
10 | nnrecre 12335 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
11 | 10 | ad2antlr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
12 | 9, 11 | resubcld 11718 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐴‘𝑖) − (1 / 𝑛)) ∈ ℝ) |
13 | 6, 12 | fvmpt2d 7042 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
14 | 13 | an32s 651 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
15 | iccvonmbllem.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) | |
16 | 15 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))))) |
17 | 4 | mptexd 7261 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) ∈ V) |
18 | 16, 17 | fvmpt2d 7042 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
19 | iccvonmbllem.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
20 | 19 | ffvelcdmda 7118 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
21 | 20 | adantlr 714 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
22 | 21, 11 | readdcld 11319 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐵‘𝑖) + (1 / 𝑛)) ∈ ℝ) |
23 | 18, 22 | fvmpt2d 7042 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
24 | 23 | an32s 651 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
25 | 14, 24 | oveq12d 7466 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
26 | 25 | iineq2dv 5040 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
27 | 8, 20 | iooiinicc 45460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛))) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
28 | 26, 27 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
29 | 28 | ixpeq2dva 8970 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
30 | 29 | eqcomd 2746 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
31 | eqidd 2741 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) | |
32 | nnn0 45293 | . . . . 5 ⊢ ℕ ≠ ∅ | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ≠ ∅) |
34 | ixpiin 8982 | . . . 4 ⊢ (ℕ ≠ ∅ → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
36 | 30, 31, 35 | 3eqtr3d 2788 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
37 | iccvonmbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
38 | 3, 37 | dmovnsal 46533 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
39 | nnct 14032 | . . . 4 ⊢ ℕ ≼ ω | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
41 | 12 | fmpttd 7149 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ) |
42 | ressxr 11334 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
43 | 42 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ⊆ ℝ*) |
44 | 41, 43 | fssd 6764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*) |
45 | 6 | feq1d 6732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)) |
46 | 44, 45 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ*) |
47 | 22 | fmpttd 7149 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ) |
48 | 47, 43 | fssd 6764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*) |
49 | 18 | feq1d 6732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)) |
50 | 48, 49 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):𝑋⟶ℝ*) |
51 | 4, 37, 46, 50 | ioovonmbl 46598 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
52 | 38, 40, 33, 51 | saliincl 46248 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
53 | 36, 52 | eqeltrd 2844 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 Xcixp 8955 ≼ cdom 9001 Fincfn 9003 ℝcr 11183 1c1 11185 + caddc 11187 ℝ*cxr 11323 − cmin 11520 / cdiv 11947 ℕcn 12293 (,)cioo 13407 [,]cicc 13410 volncvoln 46459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-abv 20832 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-lmhm 21044 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-refld 21646 df-phl 21667 df-dsmm 21775 df-frlm 21790 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cmp 23416 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-tng 24618 df-nrg 24619 df-nlm 24620 df-clm 25115 df-cph 25221 df-tcph 25222 df-rrx 25438 df-ovol 25518 df-vol 25519 df-salg 46230 df-sumge0 46284 df-mea 46371 df-ome 46411 df-caragen 46413 df-ovoln 46458 df-voln 46460 |
This theorem is referenced by: iccvonmbl 46600 |
Copyright terms: Public domain | W3C validator |