| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccvonmbllem | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iccvonmbllem.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| iccvonmbllem.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| iccvonmbllem.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| iccvonmbllem.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| iccvonmbllem.c | ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
| iccvonmbllem.d | ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
| Ref | Expression |
|---|---|
| iccvonmbllem | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccvonmbllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) | |
| 2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))))) |
| 3 | iccvonmbllem.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 4 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
| 5 | 4 | mptexd 7160 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) ∈ V) |
| 6 | 2, 5 | fvmpt2d 6943 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
| 7 | iccvonmbllem.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 8 | 7 | ffvelcdmda 7018 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
| 9 | 8 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈ ℝ) |
| 10 | nnrecre 12170 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
| 11 | 10 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
| 12 | 9, 11 | resubcld 11548 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐴‘𝑖) − (1 / 𝑛)) ∈ ℝ) |
| 13 | 6, 12 | fvmpt2d 6943 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
| 14 | 13 | an32s 652 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛)‘𝑖) = ((𝐴‘𝑖) − (1 / 𝑛))) |
| 15 | iccvonmbllem.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) | |
| 16 | 15 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))))) |
| 17 | 4 | mptexd 7160 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) ∈ V) |
| 18 | 16, 17 | fvmpt2d 6943 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
| 19 | iccvonmbllem.b | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 20 | 19 | ffvelcdmda 7018 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
| 21 | 20 | adantlr 715 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈ ℝ) |
| 22 | 21, 11 | readdcld 11144 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐵‘𝑖) + (1 / 𝑛)) ∈ ℝ) |
| 23 | 18, 22 | fvmpt2d 6943 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ 𝑋) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
| 24 | 23 | an32s 652 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)‘𝑖) = ((𝐵‘𝑖) + (1 / 𝑛))) |
| 25 | 14, 24 | oveq12d 7367 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
| 26 | 25 | iineq2dv 4967 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛)))) |
| 27 | 8, 20 | iooiinicc 45527 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐴‘𝑖) − (1 / 𝑛))(,)((𝐵‘𝑖) + (1 / 𝑛))) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
| 28 | 26, 27 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
| 29 | 28 | ixpeq2dva 8839 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) |
| 30 | 29 | eqcomd 2735 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
| 31 | eqidd 2730 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖))) | |
| 32 | nnn0 45361 | . . . . 5 ⊢ ℕ ≠ ∅ | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ≠ ∅) |
| 34 | ixpiin 8851 | . . . 4 ⊢ (ℕ ≠ ∅ → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) | |
| 35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ∩ 𝑛 ∈ ℕ (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
| 36 | 30, 31, 35 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) = ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖))) |
| 37 | iccvonmbllem.s | . . . 4 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 38 | 3, 37 | dmovnsal 46597 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 39 | nnct 13888 | . . . 4 ⊢ ℕ ≼ ω | |
| 40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
| 41 | 12 | fmpttd 7049 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ) |
| 42 | ressxr 11159 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
| 43 | 42 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ⊆ ℝ*) |
| 44 | 41, 43 | fssd 6669 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*) |
| 45 | 6 | feq1d 6634 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)) |
| 46 | 44, 45 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ*) |
| 47 | 22 | fmpttd 7049 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ) |
| 48 | 47, 43 | fssd 6669 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*) |
| 49 | 18 | feq1d 6634 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛):𝑋⟶ℝ* ↔ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)) |
| 50 | 48, 49 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):𝑋⟶ℝ*) |
| 51 | 4, 37, 46, 50 | ioovonmbl 46662 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
| 52 | 38, 40, 33, 51 | saliincl 46312 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ X𝑖 ∈ 𝑋 (((𝐶‘𝑛)‘𝑖)(,)((𝐷‘𝑛)‘𝑖)) ∈ 𝑆) |
| 53 | 36, 52 | eqeltrd 2828 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 ∩ ciin 4942 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ωcom 7799 Xcixp 8824 ≼ cdom 8870 Fincfn 8872 ℝcr 11008 1c1 11010 + caddc 11012 ℝ*cxr 11148 − cmin 11347 / cdiv 11777 ℕcn 12128 (,)cioo 13248 [,]cicc 13251 volncvoln 46523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-abv 20694 df-staf 20724 df-srng 20725 df-lmod 20765 df-lss 20835 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-refld 21512 df-phl 21533 df-dsmm 21639 df-frlm 21654 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cmp 23272 df-xms 24206 df-ms 24207 df-nm 24468 df-ngp 24469 df-tng 24470 df-nrg 24471 df-nlm 24472 df-clm 24961 df-cph 25066 df-tcph 25067 df-rrx 25283 df-ovol 25363 df-vol 25364 df-salg 46294 df-sumge0 46348 df-mea 46435 df-ome 46475 df-caragen 46477 df-ovoln 46522 df-voln 46524 |
| This theorem is referenced by: iccvonmbl 46664 |
| Copyright terms: Public domain | W3C validator |