MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntziinsn Structured version   Visualization version   GIF version

Theorem cntziinsn 19249
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntziinsn (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑆   𝑥,𝑍

Proof of Theorem cntziinsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2731 . . 3 (+g𝑀) = (+g𝑀)
3 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19233 . 2 (𝑆𝐵 → (𝑍𝑆) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
5 ssel2 3924 . . . . . 6 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
61, 2, 3cntzsnval 19236 . . . . . 6 (𝑥𝐵 → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
75, 6syl 17 . . . . 5 ((𝑆𝐵𝑥𝑆) → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
87iineq2dv 4965 . . . 4 (𝑆𝐵 𝑥𝑆 (𝑍‘{𝑥}) = 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
98ineq2d 4167 . . 3 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}))
10 riinrab 5030 . . 3 (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}
119, 10eqtrdi 2782 . 2 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
124, 11eqtr4d 2769 1 (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cin 3896  wss 3897  {csn 4573   ciin 4940  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Cntzccntz 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-cntz 19229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator