Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntziinsn | Structured version Visualization version GIF version |
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntziinsn | ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzrec.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | cntzrec.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 19015 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
5 | ssel2 3926 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
6 | 1, 2, 3 | cntzsnval 19018 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑍‘{𝑥}) = {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑍‘{𝑥}) = {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
8 | 7 | iineq2dv 4963 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}) = ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
9 | 8 | ineq2d 4158 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥})) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)})) |
10 | riinrab 5028 | . . 3 ⊢ (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 {𝑦 ∈ 𝐵 ∣ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)} | |
11 | 9, 10 | eqtrdi 2792 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥})) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)}) |
12 | 4, 11 | eqtr4d 2779 | 1 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 ∩ cin 3896 ⊆ wss 3897 {csn 4572 ∩ ciin 4939 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 +gcplusg 17051 Cntzccntz 19009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-cntz 19011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |