MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntziinsn Structured version   Visualization version   GIF version

Theorem cntziinsn 18465
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntziinsn (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑆   𝑥,𝑍

Proof of Theorem cntziinsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2821 . . 3 (+g𝑀) = (+g𝑀)
3 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 18451 . 2 (𝑆𝐵 → (𝑍𝑆) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
5 ssel2 3962 . . . . . 6 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
61, 2, 3cntzsnval 18454 . . . . . 6 (𝑥𝐵 → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
75, 6syl 17 . . . . 5 ((𝑆𝐵𝑥𝑆) → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
87iineq2dv 4944 . . . 4 (𝑆𝐵 𝑥𝑆 (𝑍‘{𝑥}) = 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
98ineq2d 4189 . . 3 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}))
10 riinrab 5006 . . 3 (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}
119, 10syl6eq 2872 . 2 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
124, 11eqtr4d 2859 1 (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  cin 3935  wss 3936  {csn 4567   ciin 4920  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Cntzccntz 18445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-cntz 18447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator