MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntziinsn Structured version   Visualization version   GIF version

Theorem cntziinsn 19251
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntziinsn (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑆   𝑥,𝑍

Proof of Theorem cntziinsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2729 . . 3 (+g𝑀) = (+g𝑀)
3 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19235 . 2 (𝑆𝐵 → (𝑍𝑆) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
5 ssel2 3938 . . . . . 6 ((𝑆𝐵𝑥𝑆) → 𝑥𝐵)
61, 2, 3cntzsnval 19238 . . . . . 6 (𝑥𝐵 → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
75, 6syl 17 . . . . 5 ((𝑆𝐵𝑥𝑆) → (𝑍‘{𝑥}) = {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
87iineq2dv 4977 . . . 4 (𝑆𝐵 𝑥𝑆 (𝑍‘{𝑥}) = 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
98ineq2d 4179 . . 3 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}))
10 riinrab 5043 . . 3 (𝐵 𝑥𝑆 {𝑦𝐵 ∣ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)}
119, 10eqtrdi 2780 . 2 (𝑆𝐵 → (𝐵 𝑥𝑆 (𝑍‘{𝑥})) = {𝑦𝐵 ∣ ∀𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)})
124, 11eqtr4d 2767 1 (𝑆𝐵 → (𝑍𝑆) = (𝐵 𝑥𝑆 (𝑍‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cin 3910  wss 3911  {csn 4585   ciin 4952  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Cntzccntz 19229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-cntz 19231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator