Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul12d Structured version   Visualization version   GIF version

Theorem int-mul12d 44189
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul12d.1 (𝜑𝐴 ∈ ℝ)
int-mul12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul12d (𝜑 → (1 · 𝐴) = 𝐵)

Proof of Theorem int-mul12d
StepHypRef Expression
1 int-mul12d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11296 . . 3 (𝜑𝐴 ∈ ℂ)
32mullidd 11286 . 2 (𝜑 → (1 · 𝐴) = 𝐴)
4 int-mul12d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2777 1 (𝜑 → (1 · 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7438  cr 11161  1c1 11163   · cmul 11167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-mulcl 11224  ax-mulcom 11226  ax-mulass 11228  ax-distr 11229  ax-1rid 11232  ax-cnre 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator