Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul12d Structured version   Visualization version   GIF version

Theorem int-mul12d 43604
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul12d.1 (𝜑𝐴 ∈ ℝ)
int-mul12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul12d (𝜑 → (1 · 𝐴) = 𝐵)

Proof of Theorem int-mul12d
StepHypRef Expression
1 int-mul12d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11267 . . 3 (𝜑𝐴 ∈ ℂ)
32mullidd 11257 . 2 (𝜑 → (1 · 𝐴) = 𝐴)
4 int-mul12d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2768 1 (𝜑 → (1 · 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7415  cr 11132  1c1 11134   · cmul 11138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-mulcl 11195  ax-mulcom 11197  ax-mulass 11199  ax-distr 11200  ax-1rid 11203  ax-cnre 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-iota 6495  df-fv 6551  df-ov 7418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator