Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul12d Structured version   Visualization version   GIF version

Theorem int-mul12d 41683
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul12d.1 (𝜑𝐴 ∈ ℝ)
int-mul12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul12d (𝜑 → (1 · 𝐴) = 𝐵)

Proof of Theorem int-mul12d
StepHypRef Expression
1 int-mul12d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 10934 . . 3 (𝜑𝐴 ∈ ℂ)
32mulid2d 10924 . 2 (𝜑 → (1 · 𝐴) = 𝐴)
4 int-mul12d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2778 1 (𝜑 → (1 · 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-mulcom 10866  ax-mulass 10868  ax-distr 10869  ax-1rid 10872  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator