Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul12d Structured version   Visualization version   GIF version

Theorem int-mul12d 44215
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul12d.1 (𝜑𝐴 ∈ ℝ)
int-mul12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul12d (𝜑 → (1 · 𝐴) = 𝐵)

Proof of Theorem int-mul12d
StepHypRef Expression
1 int-mul12d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11137 . . 3 (𝜑𝐴 ∈ ℂ)
32mullidd 11127 . 2 (𝜑 → (1 · 𝐴) = 𝐴)
4 int-mul12d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2766 1 (𝜑 → (1 · 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11002  1c1 11004   · cmul 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-mulcom 11067  ax-mulass 11069  ax-distr 11070  ax-1rid 11073  ax-cnre 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator