![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul12d | Structured version Visualization version GIF version |
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-mul12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mul12d | ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11296 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | mullidd 11286 | . 2 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
4 | int-mul12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | eqtrd 2777 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℝcr 11161 1c1 11163 · cmul 11167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-mulcl 11224 ax-mulcom 11226 ax-mulass 11228 ax-distr 11229 ax-1rid 11232 ax-cnre 11235 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |