![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul12d | Structured version Visualization version GIF version |
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-mul12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mul12d | ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11267 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | mullidd 11257 | . 2 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
4 | int-mul12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | eqtrd 2768 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7415 ℝcr 11132 1c1 11134 · cmul 11138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-mulcl 11195 ax-mulcom 11197 ax-mulass 11199 ax-distr 11200 ax-1rid 11203 ax-cnre 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |