Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul12d | Structured version Visualization version GIF version |
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-mul12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mul12d | ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10934 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | mulid2d 10924 | . 2 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
4 | int-mul12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |