Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul12d | Structured version Visualization version GIF version |
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-mul12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mul12d | ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | mulid2d 10993 | . 2 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
4 | int-mul12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-1rid 10941 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |