| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul11d | Structured version Visualization version GIF version | ||
| Description: First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-mul11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| int-mul11d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-mul11d | ⊢ (𝜑 → (𝐴 · 1) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-mul11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11147 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 2 | mulridd 11136 | . 2 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| 4 | int-mul11d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℝcr 11012 1c1 11014 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-mulcom 11077 ax-mulass 11079 ax-distr 11080 ax-1rid 11083 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |