Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul11d Structured version   Visualization version   GIF version

Theorem int-mul11d 41793
Description: First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul11d.1 (𝜑𝐴 ∈ ℝ)
int-mul11d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul11d (𝜑 → (𝐴 · 1) = 𝐵)

Proof of Theorem int-mul11d
StepHypRef Expression
1 int-mul11d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11003 . . 3 (𝜑𝐴 ∈ ℂ)
32mulid1d 10992 . 2 (𝜑 → (𝐴 · 1) = 𝐴)
4 int-mul11d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2778 1 (𝜑 → (𝐴 · 1) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7275  cr 10870  1c1 10872   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-mulcom 10935  ax-mulass 10937  ax-distr 10938  ax-1rid 10941  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator