![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-mul11d | Structured version Visualization version GIF version |
Description: First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-mul11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-mul11d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-mul11d | ⊢ (𝜑 → (𝐴 · 1) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-mul11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11274 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | mulridd 11263 | . 2 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
4 | int-mul11d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 ℝcr 11139 1c1 11141 · cmul 11145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-mulcl 11202 ax-mulcom 11204 ax-mulass 11206 ax-distr 11207 ax-1rid 11210 ax-cnre 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |