Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-mul11d Structured version   Visualization version   GIF version

Theorem int-mul11d 44172
Description: First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-mul11d.1 (𝜑𝐴 ∈ ℝ)
int-mul11d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-mul11d (𝜑 → (𝐴 · 1) = 𝐵)

Proof of Theorem int-mul11d
StepHypRef Expression
1 int-mul11d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11287 . . 3 (𝜑𝐴 ∈ ℂ)
32mulridd 11276 . 2 (𝜑 → (𝐴 · 1) = 𝐴)
4 int-mul11d.2 . 2 (𝜑𝐴 = 𝐵)
53, 4eqtrd 2775 1 (𝜑 → (𝐴 · 1) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  cr 11152  1c1 11154   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-mulcom 11217  ax-mulass 11219  ax-distr 11220  ax-1rid 11223  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator