Step | Hyp | Ref
| Expression |
1 | | mresspw 17301 |
. . . . 5
⊢ (𝑎 ∈ (Moore‘𝑋) → 𝑎 ⊆ 𝒫 𝑋) |
2 | | velpw 4538 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 𝒫
𝑋 ↔ 𝑎 ⊆ 𝒫 𝑋) |
3 | 1, 2 | sylibr 233 |
. . . 4
⊢ (𝑎 ∈ (Moore‘𝑋) → 𝑎 ∈ 𝒫 𝒫 𝑋) |
4 | 3 | ssriv 3925 |
. . 3
⊢
(Moore‘𝑋)
⊆ 𝒫 𝒫 𝑋 |
5 | 4 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋) |
6 | | ssidd 3944 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋) |
7 | | pwidg 4555 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝒫 𝑋) |
8 | | intssuni2 4904 |
. . . . . 6
⊢ ((𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅) → ∩ 𝑎
⊆ ∪ 𝒫 𝑋) |
9 | 8 | 3adant1 1129 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅) → ∩ 𝑎
⊆ ∪ 𝒫 𝑋) |
10 | | unipw 5366 |
. . . . 5
⊢ ∪ 𝒫 𝑋 = 𝑋 |
11 | 9, 10 | sseqtrdi 3971 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅) → ∩ 𝑎
⊆ 𝑋) |
12 | | elpw2g 5268 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (∩ 𝑎 ∈ 𝒫 𝑋 ↔ ∩ 𝑎
⊆ 𝑋)) |
13 | 12 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅) → (∩ 𝑎
∈ 𝒫 𝑋 ↔
∩ 𝑎 ⊆ 𝑋)) |
14 | 11, 13 | mpbird 256 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅) → ∩ 𝑎
∈ 𝒫 𝑋) |
15 | 6, 7, 14 | ismred 17311 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ (Moore‘𝑋)) |
16 | | n0 4280 |
. . . . 5
⊢ (𝑎 ≠ ∅ ↔
∃𝑏 𝑏 ∈ 𝑎) |
17 | | intss1 4894 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑏) |
18 | 17 | adantl 482 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏 ∈ 𝑎) → ∩ 𝑎 ⊆ 𝑏) |
19 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) → 𝑎 ⊆ (Moore‘𝑋)) |
20 | 19 | sselda 3921 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ (Moore‘𝑋)) |
21 | | mresspw 17301 |
. . . . . . . . 9
⊢ (𝑏 ∈ (Moore‘𝑋) → 𝑏 ⊆ 𝒫 𝑋) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏 ∈ 𝑎) → 𝑏 ⊆ 𝒫 𝑋) |
23 | 18, 22 | sstrd 3931 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏 ∈ 𝑎) → ∩ 𝑎 ⊆ 𝒫 𝑋) |
24 | 23 | ex 413 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) → (𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋)) |
25 | 24 | exlimdv 1936 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) → (∃𝑏 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋)) |
26 | 16, 25 | syl5bi 241 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋)) → (𝑎 ≠ ∅ → ∩ 𝑎
⊆ 𝒫 𝑋)) |
27 | 26 | 3impia 1116 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∩ 𝑎
⊆ 𝒫 𝑋) |
28 | | simp2 1136 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋)) |
29 | 28 | sselda 3921 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ (Moore‘𝑋)) |
30 | | mre1cl 17303 |
. . . . . 6
⊢ (𝑏 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝑏) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ∈ 𝑎) → 𝑋 ∈ 𝑏) |
32 | 31 | ralrimiva 3103 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∀𝑏 ∈ 𝑎 𝑋 ∈ 𝑏) |
33 | | elintg 4887 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ ∩ 𝑎 ↔ ∀𝑏 ∈ 𝑎 𝑋 ∈ 𝑏)) |
34 | 33 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → (𝑋 ∈ ∩ 𝑎 ↔ ∀𝑏 ∈ 𝑎 𝑋 ∈ 𝑏)) |
35 | 32, 34 | mpbird 256 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑋 ∈ ∩ 𝑎) |
36 | | simp12 1203 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋)) |
37 | 36 | sselda 3921 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ (Moore‘𝑋)) |
38 | | simpl2 1191 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → 𝑏 ⊆ ∩ 𝑎) |
39 | | intss1 4894 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑐) |
40 | 39 | adantl 482 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → ∩ 𝑎 ⊆ 𝑐) |
41 | 38, 40 | sstrd 3931 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → 𝑏 ⊆ 𝑐) |
42 | | simpl3 1192 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → 𝑏 ≠ ∅) |
43 | | mreintcl 17304 |
. . . . . 6
⊢ ((𝑐 ∈ (Moore‘𝑋) ∧ 𝑏 ⊆ 𝑐 ∧ 𝑏 ≠ ∅) → ∩ 𝑏
∈ 𝑐) |
44 | 37, 41, 42, 43 | syl3anc 1370 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) ∧ 𝑐 ∈ 𝑎) → ∩ 𝑏 ∈ 𝑐) |
45 | 44 | ralrimiva 3103 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) → ∀𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐) |
46 | | intex 5261 |
. . . . . 6
⊢ (𝑏 ≠ ∅ ↔ ∩ 𝑏
∈ V) |
47 | | elintg 4887 |
. . . . . 6
⊢ (∩ 𝑏
∈ V → (∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐)) |
48 | 46, 47 | sylbi 216 |
. . . . 5
⊢ (𝑏 ≠ ∅ → (∩ 𝑏
∈ ∩ 𝑎 ↔ ∀𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐)) |
49 | 48 | 3ad2ant3 1134 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) → (∩ 𝑏
∈ ∩ 𝑎 ↔ ∀𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐)) |
50 | 45, 49 | mpbird 256 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅) → ∩ 𝑏
∈ ∩ 𝑎) |
51 | 27, 35, 50 | ismred 17311 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∩ 𝑎
∈ (Moore‘𝑋)) |
52 | 5, 15, 51 | ismred 17311 |
1
⊢ (𝑋 ∈ 𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋)) |