MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mremre Structured version   Visualization version   GIF version

Theorem mremre 17313
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mremre (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))

Proof of Theorem mremre
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mresspw 17301 . . . . 5 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ⊆ 𝒫 𝑋)
2 velpw 4538 . . . . 5 (𝑎 ∈ 𝒫 𝒫 𝑋𝑎 ⊆ 𝒫 𝑋)
31, 2sylibr 233 . . . 4 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ∈ 𝒫 𝒫 𝑋)
43ssriv 3925 . . 3 (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋
54a1i 11 . 2 (𝑋𝑉 → (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋)
6 ssidd 3944 . . 3 (𝑋𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋)
7 pwidg 4555 . . 3 (𝑋𝑉𝑋 ∈ 𝒫 𝑋)
8 intssuni2 4904 . . . . . 6 ((𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
983adant1 1129 . . . . 5 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
10 unipw 5366 . . . . 5 𝒫 𝑋 = 𝑋
119, 10sseqtrdi 3971 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎𝑋)
12 elpw2g 5268 . . . . 5 (𝑋𝑉 → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
13123ad2ant1 1132 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
1411, 13mpbird 256 . . 3 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 ∈ 𝒫 𝑋)
156, 7, 14ismred 17311 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ (Moore‘𝑋))
16 n0 4280 . . . . 5 (𝑎 ≠ ∅ ↔ ∃𝑏 𝑏𝑎)
17 intss1 4894 . . . . . . . . 9 (𝑏𝑎 𝑎𝑏)
1817adantl 482 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎𝑏)
19 simpr 485 . . . . . . . . . 10 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → 𝑎 ⊆ (Moore‘𝑋))
2019sselda 3921 . . . . . . . . 9 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
21 mresspw 17301 . . . . . . . . 9 (𝑏 ∈ (Moore‘𝑋) → 𝑏 ⊆ 𝒫 𝑋)
2220, 21syl 17 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ⊆ 𝒫 𝑋)
2318, 22sstrd 3931 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎 ⊆ 𝒫 𝑋)
2423ex 413 . . . . . 6 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2524exlimdv 1936 . . . . 5 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (∃𝑏 𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2616, 25syl5bi 241 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑎 ≠ ∅ → 𝑎 ⊆ 𝒫 𝑋))
27263impia 1116 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ 𝒫 𝑋)
28 simp2 1136 . . . . . . 7 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
2928sselda 3921 . . . . . 6 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
30 mre1cl 17303 . . . . . 6 (𝑏 ∈ (Moore‘𝑋) → 𝑋𝑏)
3129, 30syl 17 . . . . 5 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑋𝑏)
3231ralrimiva 3103 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∀𝑏𝑎 𝑋𝑏)
33 elintg 4887 . . . . 5 (𝑋𝑉 → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
34333ad2ant1 1132 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
3532, 34mpbird 256 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑋 𝑎)
36 simp12 1203 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
3736sselda 3921 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑐 ∈ (Moore‘𝑋))
38 simpl2 1191 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 𝑎)
39 intss1 4894 . . . . . . . 8 (𝑐𝑎 𝑎𝑐)
4039adantl 482 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑎𝑐)
4138, 40sstrd 3931 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
42 simpl3 1192 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 ≠ ∅)
43 mreintcl 17304 . . . . . 6 ((𝑐 ∈ (Moore‘𝑋) ∧ 𝑏𝑐𝑏 ≠ ∅) → 𝑏𝑐)
4437, 41, 42, 43syl3anc 1370 . . . . 5 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
4544ralrimiva 3103 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ∀𝑐𝑎 𝑏𝑐)
46 intex 5261 . . . . . 6 (𝑏 ≠ ∅ ↔ 𝑏 ∈ V)
47 elintg 4887 . . . . . 6 ( 𝑏 ∈ V → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
4846, 47sylbi 216 . . . . 5 (𝑏 ≠ ∅ → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
49483ad2ant3 1134 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
5045, 49mpbird 256 . . 3 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑏 𝑎)
5127, 35, 50ismred 17311 . 2 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ∈ (Moore‘𝑋))
525, 15, 51ismred 17311 1 (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wex 1782  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879  cfv 6433  Moorecmre 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mre 17295
This theorem is referenced by:  mreacs  17367  mreclatdemoBAD  22247
  Copyright terms: Public domain W3C validator