MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mremre Structured version   Visualization version   GIF version

Theorem mremre 17649
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mremre (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))

Proof of Theorem mremre
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mresspw 17637 . . . . 5 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ⊆ 𝒫 𝑋)
2 velpw 4610 . . . . 5 (𝑎 ∈ 𝒫 𝒫 𝑋𝑎 ⊆ 𝒫 𝑋)
31, 2sylibr 234 . . . 4 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ∈ 𝒫 𝒫 𝑋)
43ssriv 3999 . . 3 (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋
54a1i 11 . 2 (𝑋𝑉 → (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋)
6 ssidd 4019 . . 3 (𝑋𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋)
7 pwidg 4625 . . 3 (𝑋𝑉𝑋 ∈ 𝒫 𝑋)
8 intssuni2 4978 . . . . . 6 ((𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
983adant1 1129 . . . . 5 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
10 unipw 5461 . . . . 5 𝒫 𝑋 = 𝑋
119, 10sseqtrdi 4046 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎𝑋)
12 elpw2g 5339 . . . . 5 (𝑋𝑉 → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
13123ad2ant1 1132 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
1411, 13mpbird 257 . . 3 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 ∈ 𝒫 𝑋)
156, 7, 14ismred 17647 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ (Moore‘𝑋))
16 n0 4359 . . . . 5 (𝑎 ≠ ∅ ↔ ∃𝑏 𝑏𝑎)
17 intss1 4968 . . . . . . . . 9 (𝑏𝑎 𝑎𝑏)
1817adantl 481 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎𝑏)
19 simpr 484 . . . . . . . . . 10 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → 𝑎 ⊆ (Moore‘𝑋))
2019sselda 3995 . . . . . . . . 9 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
21 mresspw 17637 . . . . . . . . 9 (𝑏 ∈ (Moore‘𝑋) → 𝑏 ⊆ 𝒫 𝑋)
2220, 21syl 17 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ⊆ 𝒫 𝑋)
2318, 22sstrd 4006 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎 ⊆ 𝒫 𝑋)
2423ex 412 . . . . . 6 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2524exlimdv 1931 . . . . 5 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (∃𝑏 𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2616, 25biimtrid 242 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑎 ≠ ∅ → 𝑎 ⊆ 𝒫 𝑋))
27263impia 1116 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ 𝒫 𝑋)
28 simp2 1136 . . . . . . 7 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
2928sselda 3995 . . . . . 6 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
30 mre1cl 17639 . . . . . 6 (𝑏 ∈ (Moore‘𝑋) → 𝑋𝑏)
3129, 30syl 17 . . . . 5 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑋𝑏)
3231ralrimiva 3144 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∀𝑏𝑎 𝑋𝑏)
33 elintg 4959 . . . . 5 (𝑋𝑉 → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
34333ad2ant1 1132 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
3532, 34mpbird 257 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑋 𝑎)
36 simp12 1203 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
3736sselda 3995 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑐 ∈ (Moore‘𝑋))
38 simpl2 1191 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 𝑎)
39 intss1 4968 . . . . . . . 8 (𝑐𝑎 𝑎𝑐)
4039adantl 481 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑎𝑐)
4138, 40sstrd 4006 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
42 simpl3 1192 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 ≠ ∅)
43 mreintcl 17640 . . . . . 6 ((𝑐 ∈ (Moore‘𝑋) ∧ 𝑏𝑐𝑏 ≠ ∅) → 𝑏𝑐)
4437, 41, 42, 43syl3anc 1370 . . . . 5 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
4544ralrimiva 3144 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ∀𝑐𝑎 𝑏𝑐)
46 intex 5350 . . . . . 6 (𝑏 ≠ ∅ ↔ 𝑏 ∈ V)
47 elintg 4959 . . . . . 6 ( 𝑏 ∈ V → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
4846, 47sylbi 217 . . . . 5 (𝑏 ≠ ∅ → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
49483ad2ant3 1134 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
5045, 49mpbird 257 . . 3 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑏 𝑎)
5127, 35, 50ismred 17647 . 2 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ∈ (Moore‘𝑋))
525, 15, 51ismred 17647 1 (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1776  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951  cfv 6563  Moorecmre 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-mre 17631
This theorem is referenced by:  mreacs  17703  mreclatdemoBAD  23120
  Copyright terms: Public domain W3C validator