Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Visualization version   GIF version

Theorem ismrcd1 39315
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 16888), isotone (satisfies mrcss 16887), and idempotent (satisfies mrcidm 16890) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 39316 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (𝜑𝐵𝑉)
ismrcd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
ismrcd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
ismrcd.m ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
ismrcd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
Assertion
Ref Expression
ismrcd1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ismrcd1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inss1 4205 . . . 4 (𝐹 ∩ I ) ⊆ 𝐹
2 dmss 5771 . . . 4 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
31, 2ax-mp 5 . . 3 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4 ismrcd.f . . 3 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
53, 4fssdm 6530 . 2 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
6 ssid 3989 . . . . . . 7 𝐵𝐵
7 ismrcd.b . . . . . . . 8 (𝜑𝐵𝑉)
8 elpwg 4542 . . . . . . . 8 (𝐵𝑉 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
106, 9mpbiri 260 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
114, 10ffvelrnd 6852 . . . . 5 (𝜑 → (𝐹𝐵) ∈ 𝒫 𝐵)
1211elpwid 4550 . . . 4 (𝜑 → (𝐹𝐵) ⊆ 𝐵)
13 velpw 4544 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
14 ismrcd.e . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
1513, 14sylan2b 595 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → 𝑥 ⊆ (𝐹𝑥))
1615ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
17 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
18 fveq2 6670 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1917, 18sseq12d 4000 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐵 ⊆ (𝐹𝐵)))
2019rspcva 3621 . . . . 5 ((𝐵 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝐵 ⊆ (𝐹𝐵))
2110, 16, 20syl2anc 586 . . . 4 (𝜑𝐵 ⊆ (𝐹𝐵))
2212, 21eqssd 3984 . . 3 (𝜑 → (𝐹𝐵) = 𝐵)
234ffnd 6515 . . . 4 (𝜑𝐹 Fn 𝒫 𝐵)
24 fnelfp 6937 . . . 4 ((𝐹 Fn 𝒫 𝐵𝐵 ∈ 𝒫 𝐵) → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2523, 10, 24syl2anc 586 . . 3 (𝜑 → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2622, 25mpbird 259 . 2 (𝜑𝐵 ∈ dom (𝐹 ∩ I ))
27 simp2 1133 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ dom (𝐹 ∩ I ))
2853ad2ant1 1129 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
2927, 28sstrd 3977 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ 𝒫 𝐵)
30 simp3 1134 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ≠ ∅)
31 intssuni2 4901 . . . . . . . . . . . 12 ((𝑧 ⊆ 𝒫 𝐵𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
3229, 30, 31syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
33 unipw 5343 . . . . . . . . . . 11 𝒫 𝐵 = 𝐵
3432, 33sseqtrdi 4017 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧𝐵)
35 intex 5240 . . . . . . . . . . . 12 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
36 elpwg 4542 . . . . . . . . . . . 12 ( 𝑧 ∈ V → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3735, 36sylbi 219 . . . . . . . . . . 11 (𝑧 ≠ ∅ → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
38373ad2ant3 1131 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3934, 38mpbird 259 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ 𝒫 𝐵)
4039adantr 483 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧 ∈ 𝒫 𝐵)
41 ismrcd.m . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
42413expib 1118 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4342alrimiv 1928 . . . . . . . . . 10 (𝜑 → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
44433ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4544adantr 483 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4629sselda 3967 . . . . . . . . . 10 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ 𝒫 𝐵)
4746elpwid 4550 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥𝐵)
48 intss1 4891 . . . . . . . . . 10 (𝑥𝑧 𝑧𝑥)
4948adantl 484 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧𝑥)
5047, 49jca 514 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥𝐵 𝑧𝑥))
51 sseq1 3992 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑥 𝑧𝑥))
5251anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵 𝑧𝑥)))
53 fveq2 6670 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹 𝑧))
5453sseq1d 3998 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹 𝑧) ⊆ (𝐹𝑥)))
5552, 54imbi12d 347 . . . . . . . . 9 (𝑦 = 𝑧 → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5655spcgv 3595 . . . . . . . 8 ( 𝑧 ∈ 𝒫 𝐵 → (∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5740, 45, 50, 56syl3c 66 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ (𝐹𝑥))
5827sselda 3967 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ dom (𝐹 ∩ I ))
59233ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝐹 Fn 𝒫 𝐵)
6059adantr 483 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝐹 Fn 𝒫 𝐵)
61 fnelfp 6937 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6260, 46, 61syl2anc 586 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6358, 62mpbid 234 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹𝑥) = 𝑥)
6457, 63sseqtrd 4007 . . . . . 6 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ 𝑥)
6564ralrimiva 3182 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
66 ssint 4892 . . . . 5 ((𝐹 𝑧) ⊆ 𝑧 ↔ ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
6765, 66sylibr 236 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) ⊆ 𝑧)
68163ad2ant1 1129 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
69 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
70 fveq2 6670 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
7169, 70sseq12d 4000 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹 𝑧)))
7271rspcva 3621 . . . . 5 (( 𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝑧 ⊆ (𝐹 𝑧))
7339, 68, 72syl2anc 586 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ (𝐹 𝑧))
7467, 73eqssd 3984 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑧)
75 fnelfp 6937 . . . 4 ((𝐹 Fn 𝒫 𝐵 𝑧 ∈ 𝒫 𝐵) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7659, 39, 75syl2anc 586 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7774, 76mpbird 259 . 2 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ dom (𝐹 ∩ I ))
785, 26, 77ismred 16873 1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   cint 4876   I cid 5459  dom cdm 5555   Fn wfn 6350  wf 6351  cfv 6355  Moorecmre 16853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-mre 16857
This theorem is referenced by:  ismrcd2  39316  istopclsd  39317  ismrc  39318
  Copyright terms: Public domain W3C validator