Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Visualization version   GIF version

Theorem ismrcd1 42709
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17660), isotone (satisfies mrcss 17659), and idempotent (satisfies mrcidm 17662) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 42710 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (𝜑𝐵𝑉)
ismrcd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
ismrcd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
ismrcd.m ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
ismrcd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
Assertion
Ref Expression
ismrcd1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ismrcd1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inss1 4237 . . . 4 (𝐹 ∩ I ) ⊆ 𝐹
2 dmss 5913 . . . 4 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
31, 2ax-mp 5 . . 3 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4 ismrcd.f . . 3 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
53, 4fssdm 6755 . 2 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
6 ssid 4006 . . . . . . 7 𝐵𝐵
7 ismrcd.b . . . . . . . 8 (𝜑𝐵𝑉)
8 elpwg 4603 . . . . . . . 8 (𝐵𝑉 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
106, 9mpbiri 258 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
114, 10ffvelcdmd 7105 . . . . 5 (𝜑 → (𝐹𝐵) ∈ 𝒫 𝐵)
1211elpwid 4609 . . . 4 (𝜑 → (𝐹𝐵) ⊆ 𝐵)
13 velpw 4605 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
14 ismrcd.e . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
1513, 14sylan2b 594 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → 𝑥 ⊆ (𝐹𝑥))
1615ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
17 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
18 fveq2 6906 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1917, 18sseq12d 4017 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐵 ⊆ (𝐹𝐵)))
2019rspcva 3620 . . . . 5 ((𝐵 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝐵 ⊆ (𝐹𝐵))
2110, 16, 20syl2anc 584 . . . 4 (𝜑𝐵 ⊆ (𝐹𝐵))
2212, 21eqssd 4001 . . 3 (𝜑 → (𝐹𝐵) = 𝐵)
234ffnd 6737 . . . 4 (𝜑𝐹 Fn 𝒫 𝐵)
24 fnelfp 7195 . . . 4 ((𝐹 Fn 𝒫 𝐵𝐵 ∈ 𝒫 𝐵) → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2523, 10, 24syl2anc 584 . . 3 (𝜑 → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2622, 25mpbird 257 . 2 (𝜑𝐵 ∈ dom (𝐹 ∩ I ))
27 simp2 1138 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ dom (𝐹 ∩ I ))
2853ad2ant1 1134 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
2927, 28sstrd 3994 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ 𝒫 𝐵)
30 simp3 1139 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ≠ ∅)
31 intssuni2 4973 . . . . . . . . . . . 12 ((𝑧 ⊆ 𝒫 𝐵𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
3229, 30, 31syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
33 unipw 5455 . . . . . . . . . . 11 𝒫 𝐵 = 𝐵
3432, 33sseqtrdi 4024 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧𝐵)
35 intex 5344 . . . . . . . . . . . 12 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
36 elpwg 4603 . . . . . . . . . . . 12 ( 𝑧 ∈ V → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3735, 36sylbi 217 . . . . . . . . . . 11 (𝑧 ≠ ∅ → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
38373ad2ant3 1136 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3934, 38mpbird 257 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ 𝒫 𝐵)
4039adantr 480 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧 ∈ 𝒫 𝐵)
41 ismrcd.m . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
42413expib 1123 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4342alrimiv 1927 . . . . . . . . . 10 (𝜑 → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
44433ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4544adantr 480 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4629sselda 3983 . . . . . . . . . 10 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ 𝒫 𝐵)
4746elpwid 4609 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥𝐵)
48 intss1 4963 . . . . . . . . . 10 (𝑥𝑧 𝑧𝑥)
4948adantl 481 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧𝑥)
5047, 49jca 511 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥𝐵 𝑧𝑥))
51 sseq1 4009 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑥 𝑧𝑥))
5251anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵 𝑧𝑥)))
53 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹 𝑧))
5453sseq1d 4015 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹 𝑧) ⊆ (𝐹𝑥)))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑧 → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5655spcgv 3596 . . . . . . . 8 ( 𝑧 ∈ 𝒫 𝐵 → (∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5740, 45, 50, 56syl3c 66 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ (𝐹𝑥))
5827sselda 3983 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ dom (𝐹 ∩ I ))
59233ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝐹 Fn 𝒫 𝐵)
6059adantr 480 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝐹 Fn 𝒫 𝐵)
61 fnelfp 7195 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6260, 46, 61syl2anc 584 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6358, 62mpbid 232 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹𝑥) = 𝑥)
6457, 63sseqtrd 4020 . . . . . 6 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ 𝑥)
6564ralrimiva 3146 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
66 ssint 4964 . . . . 5 ((𝐹 𝑧) ⊆ 𝑧 ↔ ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
6765, 66sylibr 234 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) ⊆ 𝑧)
68163ad2ant1 1134 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
69 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
70 fveq2 6906 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
7169, 70sseq12d 4017 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹 𝑧)))
7271rspcva 3620 . . . . 5 (( 𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝑧 ⊆ (𝐹 𝑧))
7339, 68, 72syl2anc 584 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ (𝐹 𝑧))
7467, 73eqssd 4001 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑧)
75 fnelfp 7195 . . . 4 ((𝐹 Fn 𝒫 𝐵 𝑧 ∈ 𝒫 𝐵) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7659, 39, 75syl2anc 584 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7774, 76mpbird 257 . 2 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ dom (𝐹 ∩ I ))
785, 26, 77ismred 17645 1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   cint 4946   I cid 5577  dom cdm 5685   Fn wfn 6556  wf 6557  cfv 6561  Moorecmre 17625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-mre 17629
This theorem is referenced by:  ismrcd2  42710  istopclsd  42711  ismrc  42712
  Copyright terms: Public domain W3C validator