Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Visualization version   GIF version

Theorem ismrcd1 40251
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17144), isotone (satisfies mrcss 17143), and idempotent (satisfies mrcidm 17146) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 40252 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (𝜑𝐵𝑉)
ismrcd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
ismrcd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
ismrcd.m ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
ismrcd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
Assertion
Ref Expression
ismrcd1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ismrcd1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inss1 4157 . . . 4 (𝐹 ∩ I ) ⊆ 𝐹
2 dmss 5785 . . . 4 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
31, 2ax-mp 5 . . 3 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4 ismrcd.f . . 3 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
53, 4fssdm 6583 . 2 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
6 ssid 3937 . . . . . . 7 𝐵𝐵
7 ismrcd.b . . . . . . . 8 (𝜑𝐵𝑉)
8 elpwg 4530 . . . . . . . 8 (𝐵𝑉 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
106, 9mpbiri 261 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
114, 10ffvelrnd 6923 . . . . 5 (𝜑 → (𝐹𝐵) ∈ 𝒫 𝐵)
1211elpwid 4538 . . . 4 (𝜑 → (𝐹𝐵) ⊆ 𝐵)
13 velpw 4532 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
14 ismrcd.e . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
1513, 14sylan2b 597 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → 𝑥 ⊆ (𝐹𝑥))
1615ralrimiva 3106 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
17 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
18 fveq2 6735 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1917, 18sseq12d 3948 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐵 ⊆ (𝐹𝐵)))
2019rspcva 3547 . . . . 5 ((𝐵 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝐵 ⊆ (𝐹𝐵))
2110, 16, 20syl2anc 587 . . . 4 (𝜑𝐵 ⊆ (𝐹𝐵))
2212, 21eqssd 3932 . . 3 (𝜑 → (𝐹𝐵) = 𝐵)
234ffnd 6564 . . . 4 (𝜑𝐹 Fn 𝒫 𝐵)
24 fnelfp 7008 . . . 4 ((𝐹 Fn 𝒫 𝐵𝐵 ∈ 𝒫 𝐵) → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2523, 10, 24syl2anc 587 . . 3 (𝜑 → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2622, 25mpbird 260 . 2 (𝜑𝐵 ∈ dom (𝐹 ∩ I ))
27 simp2 1139 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ dom (𝐹 ∩ I ))
2853ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
2927, 28sstrd 3925 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ 𝒫 𝐵)
30 simp3 1140 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ≠ ∅)
31 intssuni2 4898 . . . . . . . . . . . 12 ((𝑧 ⊆ 𝒫 𝐵𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
3229, 30, 31syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
33 unipw 5349 . . . . . . . . . . 11 𝒫 𝐵 = 𝐵
3432, 33sseqtrdi 3965 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧𝐵)
35 intex 5244 . . . . . . . . . . . 12 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
36 elpwg 4530 . . . . . . . . . . . 12 ( 𝑧 ∈ V → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3735, 36sylbi 220 . . . . . . . . . . 11 (𝑧 ≠ ∅ → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
38373ad2ant3 1137 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
3934, 38mpbird 260 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ 𝒫 𝐵)
4039adantr 484 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧 ∈ 𝒫 𝐵)
41 ismrcd.m . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
42413expib 1124 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4342alrimiv 1935 . . . . . . . . . 10 (𝜑 → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
44433ad2ant1 1135 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4544adantr 484 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4629sselda 3915 . . . . . . . . . 10 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ 𝒫 𝐵)
4746elpwid 4538 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥𝐵)
48 intss1 4888 . . . . . . . . . 10 (𝑥𝑧 𝑧𝑥)
4948adantl 485 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧𝑥)
5047, 49jca 515 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥𝐵 𝑧𝑥))
51 sseq1 3940 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑥 𝑧𝑥))
5251anbi2d 632 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵 𝑧𝑥)))
53 fveq2 6735 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹 𝑧))
5453sseq1d 3946 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹 𝑧) ⊆ (𝐹𝑥)))
5552, 54imbi12d 348 . . . . . . . . 9 (𝑦 = 𝑧 → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5655spcgv 3523 . . . . . . . 8 ( 𝑧 ∈ 𝒫 𝐵 → (∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5740, 45, 50, 56syl3c 66 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ (𝐹𝑥))
5827sselda 3915 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ dom (𝐹 ∩ I ))
59233ad2ant1 1135 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝐹 Fn 𝒫 𝐵)
6059adantr 484 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝐹 Fn 𝒫 𝐵)
61 fnelfp 7008 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6260, 46, 61syl2anc 587 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6358, 62mpbid 235 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹𝑥) = 𝑥)
6457, 63sseqtrd 3955 . . . . . 6 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ 𝑥)
6564ralrimiva 3106 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
66 ssint 4889 . . . . 5 ((𝐹 𝑧) ⊆ 𝑧 ↔ ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
6765, 66sylibr 237 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) ⊆ 𝑧)
68163ad2ant1 1135 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
69 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
70 fveq2 6735 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
7169, 70sseq12d 3948 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹 𝑧)))
7271rspcva 3547 . . . . 5 (( 𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝑧 ⊆ (𝐹 𝑧))
7339, 68, 72syl2anc 587 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ (𝐹 𝑧))
7467, 73eqssd 3932 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑧)
75 fnelfp 7008 . . . 4 ((𝐹 Fn 𝒫 𝐵 𝑧 ∈ 𝒫 𝐵) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7659, 39, 75syl2anc 587 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7774, 76mpbird 260 . 2 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ dom (𝐹 ∩ I ))
785, 26, 77ismred 17129 1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wcel 2111  wne 2941  wral 3062  Vcvv 3420  cin 3879  wss 3880  c0 4251  𝒫 cpw 4527   cuni 4833   cint 4873   I cid 5468  dom cdm 5565   Fn wfn 6392  wf 6393  cfv 6397  Moorecmre 17109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-int 4874  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-fv 6405  df-mre 17113
This theorem is referenced by:  ismrcd2  40252  istopclsd  40253  ismrc  40254
  Copyright terms: Public domain W3C validator