MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Structured version   Visualization version   GIF version

Theorem submre 17573
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))

Proof of Theorem submre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 4204 . . 3 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
21a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
3 simpr 484 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴𝐶)
4 pwidg 4586 . . . 4 (𝐴𝐶𝐴 ∈ 𝒫 𝐴)
54adantl 481 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ 𝒫 𝐴)
63, 5elind 4166 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ (𝐶 ∩ 𝒫 𝐴))
7 simp1l 1198 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
8 inss1 4203 . . . . . 6 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶
9 sstr 3958 . . . . . 6 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶) → 𝑥𝐶)
108, 9mpan2 691 . . . . 5 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥𝐶)
11103ad2ant2 1134 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
12 simp3 1138 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
13 mreintcl 17563 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
147, 11, 12, 13syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
15 sstr 3958 . . . . . . . 8 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
161, 15mpan2 691 . . . . . . 7 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
17163ad2ant2 1134 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝐴)
18 intssuni2 4940 . . . . . 6 ((𝑥 ⊆ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
1917, 12, 18syl2anc 584 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
20 unipw 5413 . . . . 5 𝒫 𝐴 = 𝐴
2119, 20sseqtrdi 3990 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
22 elpw2g 5291 . . . . . 6 (𝐴𝐶 → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2322adantl 481 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
24233ad2ant1 1133 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2521, 24mpbird 257 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ 𝒫 𝐴)
2614, 25elind 4166 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝐶 ∩ 𝒫 𝐴))
272, 6, 26ismred 17570 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2926  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   cint 4913  cfv 6514  Moorecmre 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-mre 17554
This theorem is referenced by:  submrc  17596
  Copyright terms: Public domain W3C validator