MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Structured version   Visualization version   GIF version

Theorem submre 17314
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))

Proof of Theorem submre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 4163 . . 3 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
21a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
3 simpr 485 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴𝐶)
4 pwidg 4555 . . . 4 (𝐴𝐶𝐴 ∈ 𝒫 𝐴)
54adantl 482 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ 𝒫 𝐴)
63, 5elind 4128 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ (𝐶 ∩ 𝒫 𝐴))
7 simp1l 1196 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
8 inss1 4162 . . . . . 6 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶
9 sstr 3929 . . . . . 6 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶) → 𝑥𝐶)
108, 9mpan2 688 . . . . 5 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥𝐶)
11103ad2ant2 1133 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
12 simp3 1137 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
13 mreintcl 17304 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
147, 11, 12, 13syl3anc 1370 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
15 sstr 3929 . . . . . . . 8 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
161, 15mpan2 688 . . . . . . 7 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
17163ad2ant2 1133 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝐴)
18 intssuni2 4904 . . . . . 6 ((𝑥 ⊆ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
1917, 12, 18syl2anc 584 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
20 unipw 5366 . . . . 5 𝒫 𝐴 = 𝐴
2119, 20sseqtrdi 3971 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
22 elpw2g 5268 . . . . . 6 (𝐴𝐶 → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2322adantl 482 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
24233ad2ant1 1132 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2521, 24mpbird 256 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ 𝒫 𝐴)
2614, 25elind 4128 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝐶 ∩ 𝒫 𝐴))
272, 6, 26ismred 17311 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879  cfv 6433  Moorecmre 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mre 17295
This theorem is referenced by:  submrc  17337
  Copyright terms: Public domain W3C validator