MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Structured version   Visualization version   GIF version

Theorem submre 17566
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))

Proof of Theorem submre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 4201 . . 3 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
21a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
3 simpr 484 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴𝐶)
4 pwidg 4583 . . . 4 (𝐴𝐶𝐴 ∈ 𝒫 𝐴)
54adantl 481 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ 𝒫 𝐴)
63, 5elind 4163 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → 𝐴 ∈ (𝐶 ∩ 𝒫 𝐴))
7 simp1l 1198 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
8 inss1 4200 . . . . . 6 (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶
9 sstr 3955 . . . . . 6 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝐶) → 𝑥𝐶)
108, 9mpan2 691 . . . . 5 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥𝐶)
11103ad2ant2 1134 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
12 simp3 1138 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅)
13 mreintcl 17556 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
147, 11, 12, 13syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐶)
15 sstr 3955 . . . . . . . 8 ((𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ (𝐶 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
161, 15mpan2 691 . . . . . . 7 (𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
17163ad2ant2 1134 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝐴)
18 intssuni2 4937 . . . . . 6 ((𝑥 ⊆ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
1917, 12, 18syl2anc 584 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 𝒫 𝐴)
20 unipw 5410 . . . . 5 𝒫 𝐴 = 𝐴
2119, 20sseqtrdi 3987 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
22 elpw2g 5288 . . . . . 6 (𝐴𝐶 → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2322adantl 481 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
24233ad2ant1 1133 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴))
2521, 24mpbird 257 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ 𝒫 𝐴)
2614, 25elind 4163 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) ∧ 𝑥 ⊆ (𝐶 ∩ 𝒫 𝐴) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝐶 ∩ 𝒫 𝐴))
272, 6, 26ismred 17563 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   cint 4910  cfv 6511  Moorecmre 17543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-mre 17547
This theorem is referenced by:  submrc  17589
  Copyright terms: Public domain W3C validator