MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Structured version   Visualization version   GIF version

Theorem submre 17553
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ (𝐢 ∩ 𝒫 𝐴) ∈ (Mooreβ€˜π΄))

Proof of Theorem submre
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 inss2 4229 . . 3 (𝐢 ∩ 𝒫 𝐴) βŠ† 𝒫 𝐴
21a1i 11 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ (𝐢 ∩ 𝒫 𝐴) βŠ† 𝒫 𝐴)
3 simpr 485 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ 𝐴 ∈ 𝐢)
4 pwidg 4622 . . . 4 (𝐴 ∈ 𝐢 β†’ 𝐴 ∈ 𝒫 𝐴)
54adantl 482 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ 𝐴 ∈ 𝒫 𝐴)
63, 5elind 4194 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ 𝐴 ∈ (𝐢 ∩ 𝒫 𝐴))
7 simp1l 1197 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ 𝐢 ∈ (Mooreβ€˜π‘‹))
8 inss1 4228 . . . . . 6 (𝐢 ∩ 𝒫 𝐴) βŠ† 𝐢
9 sstr 3990 . . . . . 6 ((π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ (𝐢 ∩ 𝒫 𝐴) βŠ† 𝐢) β†’ π‘₯ βŠ† 𝐢)
108, 9mpan2 689 . . . . 5 (π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) β†’ π‘₯ βŠ† 𝐢)
11103ad2ant2 1134 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ βŠ† 𝐢)
12 simp3 1138 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ β‰  βˆ…)
13 mreintcl 17543 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝐢)
147, 11, 12, 13syl3anc 1371 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝐢)
15 sstr 3990 . . . . . . . 8 ((π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ (𝐢 ∩ 𝒫 𝐴) βŠ† 𝒫 𝐴) β†’ π‘₯ βŠ† 𝒫 𝐴)
161, 15mpan2 689 . . . . . . 7 (π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) β†’ π‘₯ βŠ† 𝒫 𝐴)
17163ad2ant2 1134 . . . . . 6 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ βŠ† 𝒫 𝐴)
18 intssuni2 4977 . . . . . 6 ((π‘₯ βŠ† 𝒫 𝐴 ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ βŠ† βˆͺ 𝒫 𝐴)
1917, 12, 18syl2anc 584 . . . . 5 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ βŠ† βˆͺ 𝒫 𝐴)
20 unipw 5450 . . . . 5 βˆͺ 𝒫 𝐴 = 𝐴
2119, 20sseqtrdi 4032 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ βŠ† 𝐴)
22 elpw2g 5344 . . . . . 6 (𝐴 ∈ 𝐢 β†’ (∩ π‘₯ ∈ 𝒫 𝐴 ↔ ∩ π‘₯ βŠ† 𝐴))
2322adantl 482 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ (∩ π‘₯ ∈ 𝒫 𝐴 ↔ ∩ π‘₯ βŠ† 𝐴))
24233ad2ant1 1133 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ (∩ π‘₯ ∈ 𝒫 𝐴 ↔ ∩ π‘₯ βŠ† 𝐴))
2521, 24mpbird 256 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝒫 𝐴)
2614, 25elind 4194 . 2 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) ∧ π‘₯ βŠ† (𝐢 ∩ 𝒫 𝐴) ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ ∈ (𝐢 ∩ 𝒫 𝐴))
272, 6, 26ismred 17550 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢) β†’ (𝐢 ∩ 𝒫 𝐴) ∈ (Mooreβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106   β‰  wne 2940   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆͺ cuni 4908  βˆ© cint 4950  β€˜cfv 6543  Moorecmre 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-mre 17534
This theorem is referenced by:  submrc  17576
  Copyright terms: Public domain W3C validator