MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsdm Structured version   Visualization version   GIF version

Theorem setsdm 16293
Description: The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsdm ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))

Proof of Theorem setsdm
StepHypRef Expression
1 opex 5166 . . . . 5 𝐼, 𝐸⟩ ∈ V
21a1i 11 . . . 4 (𝐸𝑊 → ⟨𝐼, 𝐸⟩ ∈ V)
3 setsvalg 16288 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
42, 3sylan2 586 . . 3 ((𝐺𝑉𝐸𝑊) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
54dmeqd 5573 . 2 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
6 dmun 5578 . . 3 dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩})
7 dmres 5670 . . . . 5 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 dmsnopg 5862 . . . . . . . . 9 (𝐸𝑊 → dom {⟨𝐼, 𝐸⟩} = {𝐼})
98adantl 475 . . . . . . . 8 ((𝐺𝑉𝐸𝑊) → dom {⟨𝐼, 𝐸⟩} = {𝐼})
109difeq2d 3951 . . . . . . 7 ((𝐺𝑉𝐸𝑊) → (V ∖ dom {⟨𝐼, 𝐸⟩}) = (V ∖ {𝐼}))
1110ineq1d 4036 . . . . . 6 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = ((V ∖ {𝐼}) ∩ dom 𝐺))
12 incom 4028 . . . . . . 7 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∩ (V ∖ {𝐼}))
13 invdif 4095 . . . . . . 7 (dom 𝐺 ∩ (V ∖ {𝐼})) = (dom 𝐺 ∖ {𝐼})
1412, 13eqtri 2802 . . . . . 6 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼})
1511, 14syl6eq 2830 . . . . 5 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼}))
167, 15syl5eq 2826 . . . 4 ((𝐺𝑉𝐸𝑊) → dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = (dom 𝐺 ∖ {𝐼}))
1716, 9uneq12d 3991 . . 3 ((𝐺𝑉𝐸𝑊) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
186, 17syl5eq 2826 . 2 ((𝐺𝑉𝐸𝑊) → dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
19 undif1 4267 . . 3 ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼})
2019a1i 11 . 2 ((𝐺𝑉𝐸𝑊) → ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼}))
215, 18, 203eqtrd 2818 1 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  cun 3790  cin 3791  {csn 4398  cop 4404  dom cdm 5357  cres 5359  (class class class)co 6924   sSet csts 16257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-res 5369  df-iota 6101  df-fun 6139  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-sets 16266
This theorem is referenced by:  setsstruct2  16297  basprssdmsets  16325
  Copyright terms: Public domain W3C validator