MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsdm Structured version   Visualization version   GIF version

Theorem setsdm 16517
Description: The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsdm ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))

Proof of Theorem setsdm
StepHypRef Expression
1 opex 5343 . . . . 5 𝐼, 𝐸⟩ ∈ V
21a1i 11 . . . 4 (𝐸𝑊 → ⟨𝐼, 𝐸⟩ ∈ V)
3 setsvalg 16512 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
42, 3sylan2 595 . . 3 ((𝐺𝑉𝐸𝑊) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
54dmeqd 5761 . 2 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
6 dmun 5766 . . 3 dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩})
7 dmres 5862 . . . . 5 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 dmsnopg 6057 . . . . . . . . 9 (𝐸𝑊 → dom {⟨𝐼, 𝐸⟩} = {𝐼})
98adantl 485 . . . . . . . 8 ((𝐺𝑉𝐸𝑊) → dom {⟨𝐼, 𝐸⟩} = {𝐼})
109difeq2d 4085 . . . . . . 7 ((𝐺𝑉𝐸𝑊) → (V ∖ dom {⟨𝐼, 𝐸⟩}) = (V ∖ {𝐼}))
1110ineq1d 4173 . . . . . 6 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = ((V ∖ {𝐼}) ∩ dom 𝐺))
12 incom 4163 . . . . . . 7 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∩ (V ∖ {𝐼}))
13 invdif 4230 . . . . . . 7 (dom 𝐺 ∩ (V ∖ {𝐼})) = (dom 𝐺 ∖ {𝐼})
1412, 13eqtri 2847 . . . . . 6 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼})
1511, 14syl6eq 2875 . . . . 5 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼}))
167, 15syl5eq 2871 . . . 4 ((𝐺𝑉𝐸𝑊) → dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = (dom 𝐺 ∖ {𝐼}))
1716, 9uneq12d 4126 . . 3 ((𝐺𝑉𝐸𝑊) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
186, 17syl5eq 2871 . 2 ((𝐺𝑉𝐸𝑊) → dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
19 undif1 4407 . . 3 ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼})
2019a1i 11 . 2 ((𝐺𝑉𝐸𝑊) → ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼}))
215, 18, 203eqtrd 2863 1 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  cdif 3916  cun 3917  cin 3918  {csn 4550  cop 4556  dom cdm 5542  cres 5544  (class class class)co 7149   sSet csts 16481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-res 5554  df-iota 6302  df-fun 6345  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-sets 16490
This theorem is referenced by:  setsstruct2  16521  basprssdmsets  16549
  Copyright terms: Public domain W3C validator