MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsdm Structured version   Visualization version   GIF version

Theorem setsdm 17217
Description: The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsdm ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))

Proof of Theorem setsdm
StepHypRef Expression
1 opex 5484 . . . . 5 𝐼, 𝐸⟩ ∈ V
21a1i 11 . . . 4 (𝐸𝑊 → ⟨𝐼, 𝐸⟩ ∈ V)
3 setsvalg 17213 . . . 4 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
42, 3sylan2 592 . . 3 ((𝐺𝑉𝐸𝑊) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
54dmeqd 5930 . 2 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
6 dmun 5935 . . 3 dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩})
7 dmres 6041 . . . . 5 dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺)
8 dmsnopg 6244 . . . . . . . . 9 (𝐸𝑊 → dom {⟨𝐼, 𝐸⟩} = {𝐼})
98adantl 481 . . . . . . . 8 ((𝐺𝑉𝐸𝑊) → dom {⟨𝐼, 𝐸⟩} = {𝐼})
109difeq2d 4149 . . . . . . 7 ((𝐺𝑉𝐸𝑊) → (V ∖ dom {⟨𝐼, 𝐸⟩}) = (V ∖ {𝐼}))
1110ineq1d 4240 . . . . . 6 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = ((V ∖ {𝐼}) ∩ dom 𝐺))
12 incom 4230 . . . . . . 7 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∩ (V ∖ {𝐼}))
13 invdif 4298 . . . . . . 7 (dom 𝐺 ∩ (V ∖ {𝐼})) = (dom 𝐺 ∖ {𝐼})
1412, 13eqtri 2768 . . . . . 6 ((V ∖ {𝐼}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼})
1511, 14eqtrdi 2796 . . . . 5 ((𝐺𝑉𝐸𝑊) → ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝐺) = (dom 𝐺 ∖ {𝐼}))
167, 15eqtrid 2792 . . . 4 ((𝐺𝑉𝐸𝑊) → dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = (dom 𝐺 ∖ {𝐼}))
1716, 9uneq12d 4192 . . 3 ((𝐺𝑉𝐸𝑊) → (dom (𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
186, 17eqtrid 2792 . 2 ((𝐺𝑉𝐸𝑊) → dom ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}))
19 undif1 4499 . . 3 ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼})
2019a1i 11 . 2 ((𝐺𝑉𝐸𝑊) → ((dom 𝐺 ∖ {𝐼}) ∪ {𝐼}) = (dom 𝐺 ∪ {𝐼}))
215, 18, 203eqtrd 2784 1 ((𝐺𝑉𝐸𝑊) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  {csn 4648  cop 4654  dom cdm 5700  cres 5702  (class class class)co 7448   sSet csts 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sets 17211
This theorem is referenced by:  setsstruct2  17221  basprssdmsets  17271
  Copyright terms: Public domain W3C validator