MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppeqg Structured version   Visualization version   GIF version

Theorem fsuppeqg 8132
Description: Version of fsuppeq 8131 avoiding ax-rep 5229 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.)
Assertion
Ref Expression
fsuppeqg ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem fsuppeqg
StepHypRef Expression
1 suppimacnv 8130 . . 3 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2 ffun 6673 . . . . . 6 (𝐹:𝐼𝑆 → Fun 𝐹)
3 inpreima 7018 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
42, 3syl 17 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
5 cnvimass 6042 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
6 fdm 6679 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
7 fimacnv 6692 . . . . . . . 8 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
86, 7eqtr4d 2767 . . . . . . 7 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
95, 8sseqtrid 3986 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
10 sseqin2 4182 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
119, 10sylib 218 . . . . 5 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
124, 11eqtrd 2764 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
13 invdif 4238 . . . . 5 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
1413imaeq2i 6018 . . . 4 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
1512, 14eqtr3di 2779 . . 3 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
161, 15sylan9eq 2784 . 2 (((𝐹𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1716ex 412 1 ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cin 3910  wss 3911  {csn 4585  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493  wf 6495  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  fcdmnn0suppg  12477
  Copyright terms: Public domain W3C validator