![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppeqg | Structured version Visualization version GIF version |
Description: Version of fsuppeq 8154 avoiding ax-rep 5275 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
fsuppeqg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppimacnv 8153 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
2 | ffun 6710 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
3 | inpreima 7055 | . . . . . 6 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) |
5 | cnvimass 6070 | . . . . . . 7 ⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 | |
6 | fdm 6716 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = 𝐼) | |
7 | fimacnv 6729 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ 𝑆) = 𝐼) | |
8 | 6, 7 | eqtr4d 2767 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = (◡𝐹 “ 𝑆)) |
9 | 5, 8 | sseqtrid 4026 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆)) |
10 | sseqin2 4207 | . . . . . 6 ⊢ ((◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆) ↔ ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) | |
11 | 9, 10 | sylib 217 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
12 | 4, 11 | eqtrd 2764 | . . . 4 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
13 | invdif 4260 | . . . . 5 ⊢ (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍}) | |
14 | 13 | imaeq2i 6047 | . . . 4 ⊢ (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (𝑆 ∖ {𝑍})) |
15 | 12, 14 | eqtr3di 2779 | . . 3 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
16 | 1, 15 | sylan9eq 2784 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
17 | 16 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3937 ∩ cin 3939 ⊆ wss 3940 {csn 4620 ◡ccnv 5665 dom cdm 5666 “ cima 5669 Fun wfun 6527 ⟶wf 6529 (class class class)co 7401 supp csupp 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-supp 8141 |
This theorem is referenced by: fcdmnn0suppg 12526 |
Copyright terms: Public domain | W3C validator |