MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppeqg Structured version   Visualization version   GIF version

Theorem fsuppeqg 8145
Description: Version of fsuppeq 8144 avoiding ax-rep 5279 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.)
Assertion
Ref Expression
fsuppeqg ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem fsuppeqg
StepHypRef Expression
1 suppimacnv 8143 . . 3 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2 ffun 6708 . . . . . 6 (𝐹:𝐼𝑆 → Fun 𝐹)
3 inpreima 7051 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
42, 3syl 17 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
5 cnvimass 6070 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
6 fdm 6714 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
7 fimacnv 6727 . . . . . . . 8 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
86, 7eqtr4d 2775 . . . . . . 7 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
95, 8sseqtrid 4031 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
10 sseqin2 4212 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
119, 10sylib 217 . . . . 5 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
124, 11eqtrd 2772 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
13 invdif 4265 . . . . 5 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
1413imaeq2i 6048 . . . 4 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
1512, 14eqtr3di 2787 . . 3 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
161, 15sylan9eq 2792 . 2 (((𝐹𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1716ex 413 1 ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3942  cin 3944  wss 3945  {csn 4623  ccnv 5669  dom cdm 5670  cima 5673  Fun wfun 6527  wf 6529  (class class class)co 7394   supp csupp 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7397  df-oprab 7398  df-mpo 7399  df-supp 8131
This theorem is referenced by:  fcdmnn0suppg  12514
  Copyright terms: Public domain W3C validator