| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppeqg | Structured version Visualization version GIF version | ||
| Description: Version of fsuppeq 8154 avoiding ax-rep 5234 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| fsuppeqg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppimacnv 8153 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 2 | ffun 6691 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
| 3 | inpreima 7036 | . . . . . 6 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) |
| 5 | cnvimass 6053 | . . . . . . 7 ⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 | |
| 6 | fdm 6697 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = 𝐼) | |
| 7 | fimacnv 6710 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ 𝑆) = 𝐼) | |
| 8 | 6, 7 | eqtr4d 2767 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = (◡𝐹 “ 𝑆)) |
| 9 | 5, 8 | sseqtrid 3989 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆)) |
| 10 | sseqin2 4186 | . . . . . 6 ⊢ ((◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆) ↔ ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 12 | 4, 11 | eqtrd 2764 | . . . 4 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | invdif 4242 | . . . . 5 ⊢ (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍}) | |
| 14 | 13 | imaeq2i 6029 | . . . 4 ⊢ (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (𝑆 ∖ {𝑍})) |
| 15 | 12, 14 | eqtr3di 2779 | . . 3 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 16 | 1, 15 | sylan9eq 2784 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 17 | 16 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fun wfun 6505 ⟶wf 6507 (class class class)co 7387 supp csupp 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 |
| This theorem is referenced by: fcdmnn0suppg 12501 |
| Copyright terms: Public domain | W3C validator |