| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppeqg | Structured version Visualization version GIF version | ||
| Description: Version of fsuppeq 8100 avoiding ax-rep 5212 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| fsuppeqg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppimacnv 8099 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 2 | ffun 6649 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
| 3 | inpreima 6992 | . . . . . 6 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) |
| 5 | cnvimass 6026 | . . . . . . 7 ⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 | |
| 6 | fdm 6655 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = 𝐼) | |
| 7 | fimacnv 6668 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ 𝑆) = 𝐼) | |
| 8 | 6, 7 | eqtr4d 2769 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = (◡𝐹 “ 𝑆)) |
| 9 | 5, 8 | sseqtrid 3972 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆)) |
| 10 | sseqin2 4168 | . . . . . 6 ⊢ ((◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆) ↔ ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 12 | 4, 11 | eqtrd 2766 | . . . 4 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 13 | invdif 4224 | . . . . 5 ⊢ (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍}) | |
| 14 | 13 | imaeq2i 6002 | . . . 4 ⊢ (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (𝑆 ∖ {𝑍})) |
| 15 | 12, 14 | eqtr3di 2781 | . . 3 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 16 | 1, 15 | sylan9eq 2786 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 17 | 16 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 {csn 4571 ◡ccnv 5610 dom cdm 5611 “ cima 5614 Fun wfun 6470 ⟶wf 6472 (class class class)co 7341 supp csupp 8085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-supp 8086 |
| This theorem is referenced by: fcdmnn0suppg 12435 |
| Copyright terms: Public domain | W3C validator |