![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppeqg | Structured version Visualization version GIF version |
Description: Version of fsuppeq 8216 avoiding ax-rep 5303 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
fsuppeqg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppimacnv 8215 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
2 | ffun 6750 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
3 | inpreima 7097 | . . . . . 6 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) |
5 | cnvimass 6111 | . . . . . . 7 ⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 | |
6 | fdm 6756 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = 𝐼) | |
7 | fimacnv 6769 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ 𝑆) = 𝐼) | |
8 | 6, 7 | eqtr4d 2783 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = (◡𝐹 “ 𝑆)) |
9 | 5, 8 | sseqtrid 4061 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆)) |
10 | sseqin2 4244 | . . . . . 6 ⊢ ((◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆) ↔ ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) | |
11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
12 | 4, 11 | eqtrd 2780 | . . . 4 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
13 | invdif 4298 | . . . . 5 ⊢ (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍}) | |
14 | 13 | imaeq2i 6087 | . . . 4 ⊢ (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (𝑆 ∖ {𝑍})) |
15 | 12, 14 | eqtr3di 2795 | . . 3 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
16 | 1, 15 | sylan9eq 2800 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
17 | 16 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 {csn 4648 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fun wfun 6567 ⟶wf 6569 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: fcdmnn0suppg 12611 |
Copyright terms: Public domain | W3C validator |