| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppeq | Structured version Visualization version GIF version | ||
| Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppeq | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fex 7217 | . . . . . . 7 ⊢ ((𝐹:𝐼⟶𝑆 ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ V) | |
| 2 | 1 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
| 4 | 3 | imp 406 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝐹 ∈ V) |
| 5 | simplr 768 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝑍 ∈ 𝑊) | |
| 6 | suppimacnv 8171 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 8 | ffun 6708 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
| 9 | inpreima 7053 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍})))) |
| 11 | cnvimass 6069 | . . . . . . . 8 ⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 | |
| 12 | fdm 6714 | . . . . . . . . 9 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = 𝐼) | |
| 13 | fimacnv 6727 | . . . . . . . . 9 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ 𝑆) = 𝐼) | |
| 14 | 12, 13 | eqtr4d 2773 | . . . . . . . 8 ⊢ (𝐹:𝐼⟶𝑆 → dom 𝐹 = (◡𝐹 “ 𝑆)) |
| 15 | 11, 14 | sseqtrid 4001 | . . . . . . 7 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆)) |
| 16 | sseqin2 4198 | . . . . . . 7 ⊢ ((◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡𝐹 “ 𝑆) ↔ ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) | |
| 17 | 15, 16 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝑆 → ((◡𝐹 “ 𝑆) ∩ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 18 | 10, 17 | eqtrd 2770 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 19 | invdif 4254 | . . . . . 6 ⊢ (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍}) | |
| 20 | 19 | imaeq2i 6045 | . . . . 5 ⊢ (◡𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (◡𝐹 “ (𝑆 ∖ {𝑍})) |
| 21 | 18, 20 | eqtr3di 2785 | . . . 4 ⊢ (𝐹:𝐼⟶𝑆 → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 22 | 21 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (◡𝐹 “ (V ∖ {𝑍})) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 23 | 7, 22 | eqtrd 2770 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 24 | 23 | ex 412 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 {csn 4601 ◡ccnv 5653 dom cdm 5654 “ cima 5657 Fun wfun 6524 ⟶wf 6526 (class class class)co 7403 supp csupp 8157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-supp 8158 |
| This theorem is referenced by: ffsuppbi 9408 fcdmnn0supp 12556 mhpmulcl 22085 ffs2 32651 indsupp 32790 eulerpartlemmf 34353 pwfi2f1o 43067 |
| Copyright terms: Public domain | W3C validator |