MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppeq Structured version   Visualization version   GIF version

Theorem fsuppeq 8098
Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Assertion
Ref Expression
fsuppeq ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem fsuppeq
StepHypRef Expression
1 fex 7172 . . . . . . 7 ((𝐹:𝐼𝑆𝐼𝑉) → 𝐹 ∈ V)
21expcom 414 . . . . . 6 (𝐼𝑉 → (𝐹:𝐼𝑆𝐹 ∈ V))
32adantr 481 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆𝐹 ∈ V))
43imp 407 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝐹 ∈ V)
5 simplr 767 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝑍𝑊)
6 suppimacnv 8097 . . . 4 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 584 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
8 ffun 6668 . . . . . . 7 (𝐹:𝐼𝑆 → Fun 𝐹)
9 inpreima 7011 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
108, 9syl 17 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
11 cnvimass 6031 . . . . . . . 8 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
12 fdm 6674 . . . . . . . . 9 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
13 fimacnv 6687 . . . . . . . . 9 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
1412, 13eqtr4d 2780 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
1511, 14sseqtrid 3994 . . . . . . 7 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
16 sseqin2 4173 . . . . . . 7 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
1715, 16sylib 217 . . . . . 6 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
1810, 17eqtrd 2777 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
19 invdif 4226 . . . . . 6 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
2019imaeq2i 6009 . . . . 5 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
2118, 20eqtr3di 2792 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
2221adantl 482 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
237, 22eqtrd 2777 . 2 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
2423ex 413 1 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3443  cdif 3905  cin 3907  wss 3908  {csn 4584  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6487  wf 6489  (class class class)co 7351   supp csupp 8084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-supp 8085
This theorem is referenced by:  ffsuppbi  9292  fcdmnn0supp  12427  mhpmulcl  21490  ffs2  31469  eulerpartlemmf  32778  pwfi2f1o  41325
  Copyright terms: Public domain W3C validator