MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppeq Structured version   Visualization version   GIF version

Theorem fsuppeq 8131
Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Assertion
Ref Expression
fsuppeq ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem fsuppeq
StepHypRef Expression
1 fex 7182 . . . . . . 7 ((𝐹:𝐼𝑆𝐼𝑉) → 𝐹 ∈ V)
21expcom 413 . . . . . 6 (𝐼𝑉 → (𝐹:𝐼𝑆𝐹 ∈ V))
32adantr 480 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆𝐹 ∈ V))
43imp 406 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝐹 ∈ V)
5 simplr 768 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝑍𝑊)
6 suppimacnv 8130 . . . 4 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 584 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
8 ffun 6673 . . . . . . 7 (𝐹:𝐼𝑆 → Fun 𝐹)
9 inpreima 7018 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
108, 9syl 17 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
11 cnvimass 6042 . . . . . . . 8 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
12 fdm 6679 . . . . . . . . 9 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
13 fimacnv 6692 . . . . . . . . 9 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
1412, 13eqtr4d 2767 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
1511, 14sseqtrid 3986 . . . . . . 7 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
16 sseqin2 4182 . . . . . . 7 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
1715, 16sylib 218 . . . . . 6 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
1810, 17eqtrd 2764 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
19 invdif 4238 . . . . . 6 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
2019imaeq2i 6018 . . . . 5 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
2118, 20eqtr3di 2779 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
2221adantl 481 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
237, 22eqtrd 2764 . 2 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
2423ex 412 1 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cin 3910  wss 3911  {csn 4585  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493  wf 6495  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  ffsuppbi  9325  fcdmnn0supp  12475  mhpmulcl  22012  ffs2  32624  indsupp  32763  eulerpartlemmf  34339  pwfi2f1o  43058
  Copyright terms: Public domain W3C validator