MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsets Structured version   Visualization version   GIF version

Theorem fsets 16798
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fsets (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)

Proof of Theorem fsets
StepHypRef Expression
1 difss 4062 . . . . . 6 (𝐴 ∖ {𝑋}) ⊆ 𝐴
2 fssres 6624 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑋}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
31, 2mpan2 687 . . . . 5 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
4 ffn 6584 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fnresdm 6535 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
64, 5syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
76reseq1d 5879 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋})))
8 resres 5893 . . . . . . . 8 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋})))
9 invdif 4199 . . . . . . . . 9 (𝐴 ∩ (V ∖ {𝑋})) = (𝐴 ∖ {𝑋})
109reseq2i 5877 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋}))) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
118, 10eqtri 2766 . . . . . . 7 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
127, 11eqtr3di 2794 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
1312feq1d 6569 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵 ↔ (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵))
143, 13mpbird 256 . . . 4 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
1514adantl 481 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
16 fsnunf2 7040 . . 3 (((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
1715, 16syl3an1 1161 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
18 simp1l 1195 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝐹𝑉)
19 simp3 1136 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝑌𝐵)
20 setsval 16796 . . . 4 ((𝐹𝑉𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
2120feq1d 6569 . . 3 ((𝐹𝑉𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2218, 19, 21syl2anc 583 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2317, 22mpbird 256 1 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  {csn 4558  cop 4564  cres 5582   Fn wfn 6413  wf 6414  (class class class)co 7255   sSet csts 16792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sets 16793
This theorem is referenced by:  mdetunilem9  21677
  Copyright terms: Public domain W3C validator