MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsets Structured version   Visualization version   GIF version

Theorem fsets 16349
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fsets (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)

Proof of Theorem fsets
StepHypRef Expression
1 difss 4035 . . . . . 6 (𝐴 ∖ {𝑋}) ⊆ 𝐴
2 fssres 6419 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑋}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
31, 2mpan2 687 . . . . 5 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
4 resres 5754 . . . . . . . 8 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋})))
5 invdif 4171 . . . . . . . . 9 (𝐴 ∩ (V ∖ {𝑋})) = (𝐴 ∖ {𝑋})
65reseq2i 5738 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋}))) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
74, 6eqtri 2821 . . . . . . 7 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
8 ffn 6389 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 fnresdm 6343 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
108, 9syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
1110reseq1d 5740 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋})))
127, 11syl5reqr 2848 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
1312feq1d 6374 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵 ↔ (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵))
143, 13mpbird 258 . . . 4 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
1514adantl 482 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
16 fsnunf2 6822 . . 3 (((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
1715, 16syl3an1 1156 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
18 simp1l 1190 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝐹𝑉)
19 simp3 1131 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝑌𝐵)
20 setsval 16346 . . . 4 ((𝐹𝑉𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
2120feq1d 6374 . . 3 ((𝐹𝑉𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2218, 19, 21syl2anc 584 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2317, 22mpbird 258 1 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  {csn 4478  cop 4484  cres 5452   Fn wfn 6227  wf 6228  (class class class)co 7023   sSet csts 16314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-sets 16323
This theorem is referenced by:  mdetunilem9  20917
  Copyright terms: Public domain W3C validator