MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsets Structured version   Visualization version   GIF version

Theorem fsets 17216
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fsets (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)

Proof of Theorem fsets
StepHypRef Expression
1 difss 4159 . . . . . 6 (𝐴 ∖ {𝑋}) ⊆ 𝐴
2 fssres 6787 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑋}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
31, 2mpan2 690 . . . . 5 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
4 ffn 6747 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fnresdm 6699 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
64, 5syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
76reseq1d 6008 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋})))
8 resres 6022 . . . . . . . 8 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋})))
9 invdif 4298 . . . . . . . . 9 (𝐴 ∩ (V ∖ {𝑋})) = (𝐴 ∖ {𝑋})
109reseq2i 6006 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋}))) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
118, 10eqtri 2768 . . . . . . 7 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
127, 11eqtr3di 2795 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
1312feq1d 6732 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵 ↔ (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵))
143, 13mpbird 257 . . . 4 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
1514adantl 481 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
16 fsnunf2 7220 . . 3 (((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
1715, 16syl3an1 1163 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
18 simp1l 1197 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝐹𝑉)
19 simp3 1138 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝑌𝐵)
20 setsval 17214 . . . 4 ((𝐹𝑉𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
2120feq1d 6732 . . 3 ((𝐹𝑉𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2218, 19, 21syl2anc 583 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2317, 22mpbird 257 1 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  {csn 4648  cop 4654  cres 5702   Fn wfn 6568  wf 6569  (class class class)co 7448   sSet csts 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sets 17211
This theorem is referenced by:  mdetunilem9  22647
  Copyright terms: Public domain W3C validator