MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsets Structured version   Visualization version   GIF version

Theorem fsets 17171
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fsets (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)

Proof of Theorem fsets
StepHypRef Expression
1 difss 4131 . . . . . 6 (𝐴 ∖ {𝑋}) ⊆ 𝐴
2 fssres 6768 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑋}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
31, 2mpan2 689 . . . . 5 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
4 ffn 6728 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fnresdm 6680 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
64, 5syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝐹𝐴) = 𝐹)
76reseq1d 5988 . . . . . . 7 (𝐹:𝐴𝐵 → ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (V ∖ {𝑋})))
8 resres 6002 . . . . . . . 8 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋})))
9 invdif 4270 . . . . . . . . 9 (𝐴 ∩ (V ∖ {𝑋})) = (𝐴 ∖ {𝑋})
109reseq2i 5986 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (V ∖ {𝑋}))) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
118, 10eqtri 2754 . . . . . . 7 ((𝐹𝐴) ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋}))
127, 11eqtr3di 2781 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
1312feq1d 6713 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵 ↔ (𝐹 ↾ (𝐴 ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵))
143, 13mpbird 256 . . . 4 (𝐹:𝐴𝐵 → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
1514adantl 480 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → (𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵)
16 fsnunf2 7200 . . 3 (((𝐹 ↾ (V ∖ {𝑋})):(𝐴 ∖ {𝑋})⟶𝐵𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
1715, 16syl3an1 1160 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵)
18 simp1l 1194 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝐹𝑉)
19 simp3 1135 . . 3 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → 𝑌𝐵)
20 setsval 17169 . . . 4 ((𝐹𝑉𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
2120feq1d 6713 . . 3 ((𝐹𝑉𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2218, 19, 21syl2anc 582 . 2 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → ((𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵 ↔ ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}):𝐴𝐵))
2317, 22mpbird 256 1 (((𝐹𝑉𝐹:𝐴𝐵) ∧ 𝑋𝐴𝑌𝐵) → (𝐹 sSet ⟨𝑋, 𝑌⟩):𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3944  cun 3945  cin 3946  wss 3947  {csn 4633  cop 4639  cres 5684   Fn wfn 6549  wf 6550  (class class class)co 7424   sSet csts 17165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-sets 17166
This theorem is referenced by:  mdetunilem9  22613
  Copyright terms: Public domain W3C validator