MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxpOLD Structured version   Visualization version   GIF version

Theorem inxpOLD 5846
Description: Obsolete version of inxp 5845 as of 5-May-2025. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
inxpOLD ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxpOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 5842 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷))}
2 an4 656 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
3 elin 3979 . . . . . 6 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elin 3979 . . . . . 6 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
53, 4anbi12i 628 . . . . 5 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
62, 5bitr4i 278 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
76opabbii 5215 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
81, 7eqtri 2763 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
9 df-xp 5695 . . 3 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
10 df-xp 5695 . . 3 (𝐶 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)}
119, 10ineq12i 4226 . 2 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦𝐷)})
12 df-xp 5695 . 2 ((𝐴𝐶) × (𝐵𝐷)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷))}
138, 11, 123eqtr4i 2773 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  cin 3962  {copab 5210   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator