| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpindi | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpindi | ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp 5798 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) | |
| 2 | inidm 4193 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 3 | 2 | xpeq1i 5667 | . 2 ⊢ ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) = (𝐴 × (𝐵 ∩ 𝐶)) |
| 4 | 1, 3 | eqtr2i 2754 | 1 ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: xpriindi 5803 djuassen 10139 xpdjuen 10140 fpwwe2lem12 10602 txhaus 23541 ustund 24116 |
| Copyright terms: Public domain | W3C validator |