Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpindi | Structured version Visualization version GIF version |
Description: Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
xpindi | ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 5730 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) | |
2 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | xpeq1i 5606 | . 2 ⊢ ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) = (𝐴 × (𝐵 ∩ 𝐶)) |
4 | 1, 3 | eqtr2i 2767 | 1 ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: xpriindi 5734 djuassen 9865 xpdjuen 9866 fpwwe2lem12 10329 txhaus 22706 ustund 23281 |
Copyright terms: Public domain | W3C validator |