MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindi Structured version   Visualization version   GIF version

Theorem xpindi 5813
Description: Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 5811 . 2 ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴𝐴) × (𝐵𝐶))
2 inidm 4202 . . 3 (𝐴𝐴) = 𝐴
32xpeq1i 5680 . 2 ((𝐴𝐴) × (𝐵𝐶)) = (𝐴 × (𝐵𝐶))
41, 3eqtr2i 2759 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3925   × cxp 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-opab 5182  df-xp 5660  df-rel 5661
This theorem is referenced by:  xpriindi  5816  djuassen  10193  xpdjuen  10194  fpwwe2lem12  10656  txhaus  23585  ustund  24160
  Copyright terms: Public domain W3C validator