Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpindi | Structured version Visualization version GIF version |
Description: Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
xpindi | ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 5741 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) | |
2 | inidm 4152 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | xpeq1i 5615 | . 2 ⊢ ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) = (𝐴 × (𝐵 ∩ 𝐶)) |
4 | 1, 3 | eqtr2i 2767 | 1 ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: xpriindi 5745 djuassen 9934 xpdjuen 9935 fpwwe2lem12 10398 txhaus 22798 ustund 23373 |
Copyright terms: Public domain | W3C validator |