| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpindi | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpindi | ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp 5811 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) | |
| 2 | inidm 4202 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 3 | 2 | xpeq1i 5680 | . 2 ⊢ ((𝐴 ∩ 𝐴) × (𝐵 ∩ 𝐶)) = (𝐴 × (𝐵 ∩ 𝐶)) |
| 4 | 1, 3 | eqtr2i 2759 | 1 ⊢ (𝐴 × (𝐵 ∩ 𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3925 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: xpriindi 5816 djuassen 10193 xpdjuen 10194 fpwwe2lem12 10656 txhaus 23585 ustund 24160 |
| Copyright terms: Public domain | W3C validator |