MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Structured version   Visualization version   GIF version

Theorem inxp 5795
Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 5-May-2025.)
Assertion
Ref Expression
inxp ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5777 . 2 Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷))
2 relxp 5656 . 2 Rel ((𝐴𝐶) × (𝐵𝐷))
3 an4 656 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
4 opelxp 5674 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
5 opelxp 5674 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷) ↔ (𝑥𝐶𝑦𝐷))
64, 5anbi12i 628 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)))
7 elin 3930 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
8 elin 3930 . . . . 5 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
97, 8anbi12i 628 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
103, 6, 93bitr4i 303 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
11 elin 3930 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)))
12 opelxp 5674 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
1310, 11, 123bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)))
141, 2, 13eqrelriiv 5753 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3913  cop 4595   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  xpindi  5797  xpindir  5798  dmxpin  5895  xpssres  5989  xpdisj1  6134  xpdisj2  6135  imainrect  6154  xpima  6155  cnvrescnv  6168  curry1  8083  curry2  8086  fpar  8095  marypha1lem  9384  fpwwe2lem12  10595  hashxplem  14398  sscres  17785  gsumxp  19906  pjfval  21615  pjpm  21617  txbas  23454  txcls  23491  txrest  23518  trust  24117  ressuss  24150  trcfilu  24181  metreslem  24250  ressxms  24413  ressms  24414  mbfmcst  34250  0rrv  34442  poimirlem26  37640
  Copyright terms: Public domain W3C validator