| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxp | Structured version Visualization version GIF version | ||
| Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 5-May-2025.) |
| Ref | Expression |
|---|---|
| inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5761 | . 2 ⊢ Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) | |
| 2 | relxp 5641 | . 2 ⊢ Rel ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) | |
| 3 | an4 656 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
| 4 | opelxp 5659 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | opelxp 5659 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 7 | elin 3921 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 8 | elin 3921 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 10 | 3, 6, 9 | 3bitr4i 303 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
| 11 | elin 3921 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷))) | |
| 12 | opelxp 5659 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ 〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷))) |
| 14 | 1, 2, 13 | eqrelriiv 5737 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 〈cop 4585 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: xpindi 5780 xpindir 5781 dmxpin 5877 xpssres 5973 xpdisj1 6114 xpdisj2 6115 imainrect 6134 xpima 6135 cnvrescnv 6148 curry1 8044 curry2 8047 fpar 8056 marypha1lem 9342 fpwwe2lem12 10555 hashxplem 14358 sscres 17748 gsumxp 19873 pjfval 21631 pjpm 21633 txbas 23470 txcls 23507 txrest 23534 trust 24133 ressuss 24166 trcfilu 24197 metreslem 24266 ressxms 24429 ressms 24430 mbfmcst 34226 0rrv 34418 poimirlem26 37625 |
| Copyright terms: Public domain | W3C validator |