| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxp | Structured version Visualization version GIF version | ||
| Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2144, ax-12 2180. (Revised by SN, 5-May-2025.) |
| Ref | Expression |
|---|---|
| inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5754 | . 2 ⊢ Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) | |
| 2 | relxp 5634 | . 2 ⊢ Rel ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) | |
| 3 | an4 656 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
| 4 | opelxp 5652 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | opelxp 5652 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 7 | elin 3918 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 8 | elin 3918 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 10 | 3, 6, 9 | 3bitr4i 303 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
| 11 | elin 3918 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷))) | |
| 12 | opelxp 5652 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ 〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷))) |
| 14 | 1, 2, 13 | eqrelriiv 5730 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 〈cop 4582 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: xpindi 5773 xpindir 5774 dmxpin 5871 xpssres 5967 xpdisj1 6108 xpdisj2 6109 imainrect 6128 xpima 6129 cnvrescnv 6142 curry1 8034 curry2 8037 fpar 8046 marypha1lem 9317 fpwwe2lem12 10530 hashxplem 14337 sscres 17727 gsumxp 19886 pjfval 21641 pjpm 21643 txbas 23480 txcls 23517 txrest 23544 trust 24142 ressuss 24175 trcfilu 24206 metreslem 24275 ressxms 24438 ressms 24439 mbfmcst 34267 0rrv 34459 poimirlem26 37685 |
| Copyright terms: Public domain | W3C validator |