MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Structured version   Visualization version   GIF version

Theorem inxp 5856
Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 5-May-2025.)
Assertion
Ref Expression
inxp ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5838 . 2 Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷))
2 relxp 5718 . 2 Rel ((𝐴𝐶) × (𝐵𝐷))
3 an4 655 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
4 opelxp 5736 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
5 opelxp 5736 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷) ↔ (𝑥𝐶𝑦𝐷))
64, 5anbi12i 627 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)))
7 elin 3992 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
8 elin 3992 . . . . 5 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
97, 8anbi12i 627 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
103, 6, 93bitr4i 303 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
11 elin 3992 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)))
12 opelxp 5736 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
1310, 11, 123bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)))
141, 2, 13eqrelriiv 5814 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  cin 3975  cop 4654   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  xpindi  5858  xpindir  5859  dmxpin  5956  xpssres  6047  xpdisj1  6192  xpdisj2  6193  imainrect  6212  xpima  6213  cnvrescnv  6226  curry1  8145  curry2  8148  fpar  8157  marypha1lem  9502  fpwwe2lem12  10711  hashxplem  14482  sscres  17884  gsumxp  20018  pjfval  21749  pjpm  21751  txbas  23596  txcls  23633  txrest  23660  trust  24259  ressuss  24292  trcfilu  24324  metreslem  24393  ressxms  24559  ressms  24560  mbfmcst  34224  0rrv  34416  poimirlem26  37606
  Copyright terms: Public domain W3C validator