MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Structured version   Visualization version   GIF version

Theorem inxp 5811
Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 5-May-2025.)
Assertion
Ref Expression
inxp ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5793 . 2 Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷))
2 relxp 5672 . 2 Rel ((𝐴𝐶) × (𝐵𝐷))
3 an4 656 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
4 opelxp 5690 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
5 opelxp 5690 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷) ↔ (𝑥𝐶𝑦𝐷))
64, 5anbi12i 628 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)))
7 elin 3942 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
8 elin 3942 . . . . 5 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
97, 8anbi12i 628 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
103, 6, 93bitr4i 303 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
11 elin 3942 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)))
12 opelxp 5690 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
1310, 11, 123bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)))
141, 2, 13eqrelriiv 5769 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  cin 3925  cop 4607   × cxp 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-opab 5182  df-xp 5660  df-rel 5661
This theorem is referenced by:  xpindi  5813  xpindir  5814  dmxpin  5911  xpssres  6005  xpdisj1  6150  xpdisj2  6151  imainrect  6170  xpima  6171  cnvrescnv  6184  curry1  8103  curry2  8106  fpar  8115  marypha1lem  9445  fpwwe2lem12  10656  hashxplem  14451  sscres  17836  gsumxp  19957  pjfval  21666  pjpm  21668  txbas  23505  txcls  23542  txrest  23569  trust  24168  ressuss  24201  trcfilu  24232  metreslem  24301  ressxms  24464  ressms  24465  mbfmcst  34291  0rrv  34483  poimirlem26  37670
  Copyright terms: Public domain W3C validator