| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxp | Structured version Visualization version GIF version | ||
| Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 5-May-2025.) |
| Ref | Expression |
|---|---|
| inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5793 | . 2 ⊢ Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) | |
| 2 | relxp 5672 | . 2 ⊢ Rel ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) | |
| 3 | an4 656 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
| 4 | opelxp 5690 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | opelxp 5690 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 7 | elin 3942 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 8 | elin 3942 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 10 | 3, 6, 9 | 3bitr4i 303 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
| 11 | elin 3942 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷))) | |
| 12 | opelxp 5690 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ 〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷))) |
| 14 | 1, 2, 13 | eqrelriiv 5769 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: xpindi 5813 xpindir 5814 dmxpin 5911 xpssres 6005 xpdisj1 6150 xpdisj2 6151 imainrect 6170 xpima 6171 cnvrescnv 6184 curry1 8103 curry2 8106 fpar 8115 marypha1lem 9445 fpwwe2lem12 10656 hashxplem 14451 sscres 17836 gsumxp 19957 pjfval 21666 pjpm 21668 txbas 23505 txcls 23542 txrest 23569 trust 24168 ressuss 24201 trcfilu 24232 metreslem 24301 ressxms 24464 ressms 24465 mbfmcst 34291 0rrv 34483 poimirlem26 37670 |
| Copyright terms: Public domain | W3C validator |