| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxp | Structured version Visualization version GIF version | ||
| Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2146, ax-12 2182. (Revised by SN, 5-May-2025.) |
| Ref | Expression |
|---|---|
| inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5758 | . 2 ⊢ Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) | |
| 2 | relxp 5637 | . 2 ⊢ Rel ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) | |
| 3 | an4 656 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
| 4 | opelxp 5655 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | opelxp 5655 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 7 | elin 3914 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 8 | elin 3914 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 10 | 3, 6, 9 | 3bitr4i 303 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
| 11 | elin 3914 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷))) | |
| 12 | opelxp 5655 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ 〈𝑥, 𝑦〉 ∈ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷))) |
| 14 | 1, 2, 13 | eqrelriiv 5734 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 〈cop 4581 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: xpindi 5777 xpindir 5778 dmxpin 5875 xpssres 5971 xpdisj1 6113 xpdisj2 6114 imainrect 6133 xpima 6134 cnvrescnv 6147 curry1 8040 curry2 8043 fpar 8052 marypha1lem 9324 fpwwe2lem12 10540 hashxplem 14342 sscres 17732 gsumxp 19890 pjfval 21645 pjpm 21647 txbas 23483 txcls 23520 txrest 23547 trust 24145 ressuss 24178 trcfilu 24209 metreslem 24278 ressxms 24441 ressms 24442 mbfmcst 34293 0rrv 34485 poimirlem26 37706 |
| Copyright terms: Public domain | W3C validator |