![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inxp | Structured version Visualization version GIF version |
Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
inxp | ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopab 5830 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))} | |
2 | an4 655 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) | |
3 | elin 3965 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3965 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐷) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)) | |
5 | 3, 4 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
6 | 2, 5 | bitr4i 278 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))) |
7 | 6 | opabbii 5216 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} |
8 | 1, 7 | eqtri 2761 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} |
9 | df-xp 5683 | . . 3 ⊢ (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
10 | df-xp 5683 | . . 3 ⊢ (𝐶 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} | |
11 | 9, 10 | ineq12i 4211 | . 2 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}) |
12 | df-xp 5683 | . 2 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 ∩ 𝐶) ∧ 𝑦 ∈ (𝐵 ∩ 𝐷))} | |
13 | 8, 11, 12 | 3eqtr4i 2771 | 1 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3948 {copab 5211 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: xpindi 5834 xpindir 5835 dmxpin 5931 xpssres 6019 xpdisj1 6161 xpdisj2 6162 imainrect 6181 xpima 6182 cnvrescnv 6195 curry1 8090 curry2 8093 fpar 8102 marypha1lem 9428 fpwwe2lem12 10637 hashxplem 14393 sscres 17770 gsumxp 19844 pjfval 21261 pjpm 21263 txbas 23071 txcls 23108 txrest 23135 trust 23734 ressuss 23767 trcfilu 23799 metreslem 23868 ressxms 24034 ressms 24035 mbfmcst 33258 0rrv 33450 poimirlem26 36514 |
Copyright terms: Public domain | W3C validator |