MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Structured version   Visualization version   GIF version

Theorem inxp 5798
Description: Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 5-May-2025.)
Assertion
Ref Expression
inxp ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))

Proof of Theorem inxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5780 . 2 Rel ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷))
2 relxp 5659 . 2 Rel ((𝐴𝐶) × (𝐵𝐷))
3 an4 656 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
4 opelxp 5677 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
5 opelxp 5677 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷) ↔ (𝑥𝐶𝑦𝐷))
64, 5anbi12i 628 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑥𝐶𝑦𝐷)))
7 elin 3933 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
8 elin 3933 . . . . 5 (𝑦 ∈ (𝐵𝐷) ↔ (𝑦𝐵𝑦𝐷))
97, 8anbi12i 628 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑦𝐵𝑦𝐷)))
103, 6, 93bitr4i 303 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
11 elin 3933 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶 × 𝐷)))
12 opelxp 5677 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐵𝐷)))
1310, 11, 123bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐶) × (𝐵𝐷)))
141, 2, 13eqrelriiv 5756 1 ((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cin 3916  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  xpindi  5800  xpindir  5801  dmxpin  5898  xpssres  5992  xpdisj1  6137  xpdisj2  6138  imainrect  6157  xpima  6158  cnvrescnv  6171  curry1  8086  curry2  8089  fpar  8098  marypha1lem  9391  fpwwe2lem12  10602  hashxplem  14405  sscres  17792  gsumxp  19913  pjfval  21622  pjpm  21624  txbas  23461  txcls  23498  txrest  23525  trust  24124  ressuss  24157  trcfilu  24188  metreslem  24257  ressxms  24420  ressms  24421  mbfmcst  34257  0rrv  34449  poimirlem26  37647
  Copyright terms: Public domain W3C validator