MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eroprf Structured version   Visualization version   GIF version

Theorem eroprf 8805
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 ð― = (ðī / 𝑅)
eropr.2 ðū = (ðĩ / 𝑆)
eropr.3 (𝜑 → 𝑇 ∈ 𝑍)
eropr.4 (𝜑 → 𝑅 Er 𝑈)
eropr.5 (𝜑 → 𝑆 Er 𝑉)
eropr.6 (𝜑 → 𝑇 Er 𝑊)
eropr.7 (𝜑 → ðī ⊆ 𝑈)
eropr.8 (𝜑 → ðĩ ⊆ 𝑉)
eropr.9 (𝜑 → ðķ ⊆ 𝑊)
eropr.10 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
eropr.11 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
eropr.12 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
eropr.13 (𝜑 → 𝑅 ∈ 𝑋)
eropr.14 (𝜑 → 𝑆 ∈ 𝑌)
eropr.15 ðŋ = (ðķ / 𝑇)
Assertion
Ref Expression
eroprf (𝜑 → âĻĢ :(ð― × ðū)âŸķðŋ)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   ðĩ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðŋ,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðū,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑋,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧   𝑌,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧
Allowed substitution hints:   ðķ(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðū(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðŋ(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑉(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑊(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑋(ð‘Ĩ,ð‘Ķ)   𝑌(ð‘Ĩ,ð‘Ķ)   𝑍(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem eroprf
StepHypRef Expression
1 eropr.3 . . . . . . . . . . . 12 (𝜑 → 𝑇 ∈ 𝑍)
21ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → 𝑇 ∈ 𝑍)
3 eropr.10 . . . . . . . . . . . . 13 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
43adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → + :(ðī × ðĩ)âŸķðķ)
54fovcdmda 7574 . . . . . . . . . . 11 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (𝑝 + 𝑞) ∈ ðķ)
6 ecelqsg 8762 . . . . . . . . . . 11 ((𝑇 ∈ 𝑍 ∧ (𝑝 + 𝑞) ∈ ðķ) → [(𝑝 + 𝑞)]𝑇 ∈ (ðķ / 𝑇))
72, 5, 6syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → [(𝑝 + 𝑞)]𝑇 ∈ (ðķ / 𝑇))
8 eropr.15 . . . . . . . . . 10 ðŋ = (ðķ / 𝑇)
97, 8eleqtrrdi 2844 . . . . . . . . 9 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → [(𝑝 + 𝑞)]𝑇 ∈ ðŋ)
10 eleq1a 2828 . . . . . . . . 9 ([(𝑝 + 𝑞)]𝑇 ∈ ðŋ → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ ðŋ))
119, 10syl 17 . . . . . . . 8 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ ðŋ))
1211adantld 491 . . . . . . 7 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ ðŋ))
1312rexlimdvva 3211 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ ðŋ))
1413abssdv 4064 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⊆ ðŋ)
15 eropr.1 . . . . . . 7 ð― = (ðī / 𝑅)
16 eropr.2 . . . . . . 7 ðū = (ðĩ / 𝑆)
17 eropr.4 . . . . . . 7 (𝜑 → 𝑅 Er 𝑈)
18 eropr.5 . . . . . . 7 (𝜑 → 𝑆 Er 𝑉)
19 eropr.6 . . . . . . 7 (𝜑 → 𝑇 Er 𝑊)
20 eropr.7 . . . . . . 7 (𝜑 → ðī ⊆ 𝑈)
21 eropr.8 . . . . . . 7 (𝜑 → ðĩ ⊆ 𝑉)
22 eropr.9 . . . . . . 7 (𝜑 → ðķ ⊆ 𝑊)
23 eropr.11 . . . . . . 7 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
2415, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23eroveu 8802 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
25 iotacl 6526 . . . . . 6 (∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2714, 26sseldd 3982 . . . 4 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ)
2827ralrimivva 3200 . . 3 (𝜑 → ∀ð‘Ĩ ∈ ð― ∀ð‘Ķ ∈ ðū (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ)
29 eqid 2732 . . . 4 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3029fmpo 8050 . . 3 (∀ð‘Ĩ ∈ ð― ∀ð‘Ķ ∈ ðū (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ ↔ (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ)
3128, 30sylib 217 . 2 (𝜑 → (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ)
32 eropr.12 . . . 4 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
3315, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32erovlem 8803 . . 3 (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3433feq1d 6699 . 2 (𝜑 → ( âĻĢ :(ð― × ðū)âŸķðŋ ↔ (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ))
3531, 34mpbird 256 1 (𝜑 → âĻĢ :(ð― × ðū)âŸķðŋ)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  âˆƒ!weu 2562  {cab 2709  âˆ€wral 3061  âˆƒwrex 3070   ⊆ wss 3947   class class class wbr 5147   × cxp 5673  â„Đcio 6490  âŸķwf 6536  (class class class)co 7405  {coprab 7406   ∈ cmpo 7407   Er wer 8696  [cec 8697   / cqs 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-ec 8701  df-qs 8705
This theorem is referenced by:  eroprf2  8807
  Copyright terms: Public domain W3C validator