MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eroprf Structured version   Visualization version   GIF version

Theorem eroprf 8808
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 ð― = (ðī / 𝑅)
eropr.2 ðū = (ðĩ / 𝑆)
eropr.3 (𝜑 → 𝑇 ∈ 𝑍)
eropr.4 (𝜑 → 𝑅 Er 𝑈)
eropr.5 (𝜑 → 𝑆 Er 𝑉)
eropr.6 (𝜑 → 𝑇 Er 𝑊)
eropr.7 (𝜑 → ðī ⊆ 𝑈)
eropr.8 (𝜑 → ðĩ ⊆ 𝑉)
eropr.9 (𝜑 → ðķ ⊆ 𝑊)
eropr.10 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
eropr.11 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
eropr.12 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
eropr.13 (𝜑 → 𝑅 ∈ 𝑋)
eropr.14 (𝜑 → 𝑆 ∈ 𝑌)
eropr.15 ðŋ = (ðķ / 𝑇)
Assertion
Ref Expression
eroprf (𝜑 → âĻĢ :(ð― × ðū)âŸķðŋ)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   ðĩ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðŋ,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðū,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑋,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧   𝑌,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧
Allowed substitution hints:   ðķ(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðū(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðŋ(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑉(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑊(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑋(ð‘Ĩ,ð‘Ķ)   𝑌(ð‘Ĩ,ð‘Ķ)   𝑍(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem eroprf
StepHypRef Expression
1 eropr.3 . . . . . . . . . . . 12 (𝜑 → 𝑇 ∈ 𝑍)
21ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → 𝑇 ∈ 𝑍)
3 eropr.10 . . . . . . . . . . . . 13 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
43adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → + :(ðī × ðĩ)âŸķðķ)
54fovcdmda 7574 . . . . . . . . . . 11 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (𝑝 + 𝑞) ∈ ðķ)
6 ecelqsg 8765 . . . . . . . . . . 11 ((𝑇 ∈ 𝑍 ∧ (𝑝 + 𝑞) ∈ ðķ) → [(𝑝 + 𝑞)]𝑇 ∈ (ðķ / 𝑇))
72, 5, 6syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → [(𝑝 + 𝑞)]𝑇 ∈ (ðķ / 𝑇))
8 eropr.15 . . . . . . . . . 10 ðŋ = (ðķ / 𝑇)
97, 8eleqtrrdi 2838 . . . . . . . . 9 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → [(𝑝 + 𝑞)]𝑇 ∈ ðŋ)
10 eleq1a 2822 . . . . . . . . 9 ([(𝑝 + 𝑞)]𝑇 ∈ ðŋ → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ ðŋ))
119, 10syl 17 . . . . . . . 8 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (𝑧 = [(𝑝 + 𝑞)]𝑇 → 𝑧 ∈ ðŋ))
1211adantld 490 . . . . . . 7 (((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) ∧ (𝑝 ∈ ðī ∧ 𝑞 ∈ ðĩ)) → (((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ ðŋ))
1312rexlimdvva 3205 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → 𝑧 ∈ ðŋ))
1413abssdv 4060 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⊆ ðŋ)
15 eropr.1 . . . . . . 7 ð― = (ðī / 𝑅)
16 eropr.2 . . . . . . 7 ðū = (ðĩ / 𝑆)
17 eropr.4 . . . . . . 7 (𝜑 → 𝑅 Er 𝑈)
18 eropr.5 . . . . . . 7 (𝜑 → 𝑆 Er 𝑉)
19 eropr.6 . . . . . . 7 (𝜑 → 𝑇 Er 𝑊)
20 eropr.7 . . . . . . 7 (𝜑 → ðī ⊆ 𝑈)
21 eropr.8 . . . . . . 7 (𝜑 → ðĩ ⊆ 𝑉)
22 eropr.9 . . . . . . 7 (𝜑 → ðķ ⊆ 𝑊)
23 eropr.11 . . . . . . 7 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
2415, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23eroveu 8805 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
25 iotacl 6522 . . . . . 6 (∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ {𝑧 âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)})
2714, 26sseldd 3978 . . . 4 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ)
2827ralrimivva 3194 . . 3 (𝜑 → ∀ð‘Ĩ ∈ ð― ∀ð‘Ķ ∈ ðū (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ)
29 eqid 2726 . . . 4 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3029fmpo 8050 . . 3 (∀ð‘Ĩ ∈ ð― ∀ð‘Ķ ∈ ðū (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ∈ ðŋ ↔ (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ)
3128, 30sylib 217 . 2 (𝜑 → (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ)
32 eropr.12 . . . 4 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
3315, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32erovlem 8806 . . 3 (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3433feq1d 6695 . 2 (𝜑 → ( âĻĢ :(ð― × ðū)âŸķðŋ ↔ (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))):(ð― × ðū)âŸķðŋ))
3531, 34mpbird 257 1 (𝜑 → âĻĢ :(ð― × ðū)âŸķðŋ)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  âˆƒ!weu 2556  {cab 2703  âˆ€wral 3055  âˆƒwrex 3064   ⊆ wss 3943   class class class wbr 5141   × cxp 5667  â„Đcio 6486  âŸķwf 6532  (class class class)co 7404  {coprab 7405   ∈ cmpo 7406   Er wer 8699  [cec 8700   / cqs 8701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-ec 8704  df-qs 8708
This theorem is referenced by:  eroprf2  8810
  Copyright terms: Public domain W3C validator