![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem36 | Structured version Visualization version GIF version |
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem36.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fourierdlem36.assr | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
fourierdlem36.f | ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) |
fourierdlem36.n | ⊢ 𝑁 = ((♯‘𝐴) − 1) |
Ref | Expression |
---|---|
fourierdlem36 | ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem36.f | . . 3 ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) | |
2 | fourierdlem36.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | fourierdlem36.assr | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ltso 11370 | . . . . . . 7 ⊢ < Or ℝ | |
5 | soss 5628 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
6 | 3, 4, 5 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → < Or 𝐴) |
7 | 0zd 12651 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℤ) | |
8 | eqid 2740 | . . . . . 6 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1)) | |
9 | 2, 6, 7, 8 | fzisoeu 45215 | . . . . 5 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴)) |
10 | hashcl 14405 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
11 | 2, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
12 | 11 | nn0cnd 12615 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
13 | 1cnd 11285 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
14 | 12, 13 | negsubd 11653 | . . . . . . . . 9 ⊢ (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1)) |
15 | df-neg 11523 | . . . . . . . . . . 11 ⊢ -1 = (0 − 1) | |
16 | 15 | eqcomi 2749 | . . . . . . . . . 10 ⊢ (0 − 1) = -1 |
17 | 16 | oveq2i 7459 | . . . . . . . . 9 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1) |
18 | fourierdlem36.n | . . . . . . . . 9 ⊢ 𝑁 = ((♯‘𝐴) − 1) | |
19 | 14, 17, 18 | 3eqtr4g 2805 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁) |
20 | 19 | oveq2d 7464 | . . . . . . 7 ⊢ (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁)) |
21 | isoeq4 7356 | . . . . . . 7 ⊢ ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) | |
22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
23 | 22 | eubidv 2589 | . . . . 5 ⊢ (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
24 | 9, 23 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)) |
25 | iotacl 6559 | . . . 4 ⊢ (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
27 | 1, 26 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
28 | iotaex 6546 | . . . 4 ⊢ (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V | |
29 | 1, 28 | eqeltri 2840 | . . 3 ⊢ 𝐹 ∈ V |
30 | isoeq1 7353 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))) | |
31 | 29, 30 | elab 3694 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
32 | 27, 31 | sylib 218 | 1 ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 {cab 2717 Vcvv 3488 ⊆ wss 3976 Or wor 5606 ℩cio 6523 ‘cfv 6573 Isom wiso 6574 (class class class)co 7448 Fincfn 9003 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 − cmin 11520 -cneg 11521 ℕ0cn0 12553 ...cfz 13567 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: fourierdlem50 46077 fourierdlem51 46078 fourierdlem52 46079 fourierdlem54 46081 fourierdlem76 46103 fourierdlem102 46129 fourierdlem103 46130 fourierdlem104 46131 fourierdlem114 46141 |
Copyright terms: Public domain | W3C validator |