Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem36 | Structured version Visualization version GIF version |
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem36.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fourierdlem36.assr | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
fourierdlem36.f | ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) |
fourierdlem36.n | ⊢ 𝑁 = ((♯‘𝐴) − 1) |
Ref | Expression |
---|---|
fourierdlem36 | ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem36.f | . . 3 ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) | |
2 | fourierdlem36.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | fourierdlem36.assr | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ltso 10913 | . . . . . . 7 ⊢ < Or ℝ | |
5 | soss 5488 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
6 | 3, 4, 5 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → < Or 𝐴) |
7 | 0zd 12188 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℤ) | |
8 | eqid 2737 | . . . . . 6 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1)) | |
9 | 2, 6, 7, 8 | fzisoeu 42512 | . . . . 5 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴)) |
10 | hashcl 13923 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
11 | 2, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
12 | 11 | nn0cnd 12152 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
13 | 1cnd 10828 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
14 | 12, 13 | negsubd 11195 | . . . . . . . . 9 ⊢ (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1)) |
15 | df-neg 11065 | . . . . . . . . . . 11 ⊢ -1 = (0 − 1) | |
16 | 15 | eqcomi 2746 | . . . . . . . . . 10 ⊢ (0 − 1) = -1 |
17 | 16 | oveq2i 7224 | . . . . . . . . 9 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1) |
18 | fourierdlem36.n | . . . . . . . . 9 ⊢ 𝑁 = ((♯‘𝐴) − 1) | |
19 | 14, 17, 18 | 3eqtr4g 2803 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁) |
20 | 19 | oveq2d 7229 | . . . . . . 7 ⊢ (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁)) |
21 | isoeq4 7129 | . . . . . . 7 ⊢ ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) | |
22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
23 | 22 | eubidv 2585 | . . . . 5 ⊢ (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
24 | 9, 23 | mpbid 235 | . . . 4 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)) |
25 | iotacl 6366 | . . . 4 ⊢ (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
27 | 1, 26 | eqeltrid 2842 | . 2 ⊢ (𝜑 → 𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
28 | iotaex 6360 | . . . 4 ⊢ (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V | |
29 | 1, 28 | eqeltri 2834 | . . 3 ⊢ 𝐹 ∈ V |
30 | isoeq1 7126 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))) | |
31 | 29, 30 | elab 3587 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
32 | 27, 31 | sylib 221 | 1 ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∃!weu 2567 {cab 2714 Vcvv 3408 ⊆ wss 3866 Or wor 5467 ℩cio 6336 ‘cfv 6380 Isom wiso 6381 (class class class)co 7213 Fincfn 8626 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 < clt 10867 − cmin 11062 -cneg 11063 ℕ0cn0 12090 ...cfz 13095 ♯chash 13896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-hash 13897 |
This theorem is referenced by: fourierdlem50 43372 fourierdlem51 43373 fourierdlem52 43374 fourierdlem54 43376 fourierdlem76 43398 fourierdlem102 43424 fourierdlem103 43425 fourierdlem104 43426 fourierdlem114 43436 |
Copyright terms: Public domain | W3C validator |