Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem36 Structured version   Visualization version   GIF version

Theorem fourierdlem36 42953
 Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem36.a (𝜑𝐴 ∈ Fin)
fourierdlem36.assr (𝜑𝐴 ⊆ ℝ)
fourierdlem36.f 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
fourierdlem36.n 𝑁 = ((♯‘𝐴) − 1)
Assertion
Ref Expression
fourierdlem36 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑁   𝜑,𝑓

Proof of Theorem fourierdlem36
StepHypRef Expression
1 fourierdlem36.f . . 3 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
2 fourierdlem36.a . . . . . 6 (𝜑𝐴 ∈ Fin)
3 fourierdlem36.assr . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
4 ltso 10728 . . . . . . 7 < Or ℝ
5 soss 5461 . . . . . . 7 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
63, 4, 5mpisyl 21 . . . . . 6 (𝜑 → < Or 𝐴)
7 0zd 12001 . . . . . 6 (𝜑 → 0 ∈ ℤ)
8 eqid 2798 . . . . . 6 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1))
92, 6, 7, 8fzisoeu 42100 . . . . 5 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴))
10 hashcl 13733 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
112, 10syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1211nn0cnd 11965 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℂ)
13 1cnd 10643 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1412, 13negsubd 11010 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1))
15 df-neg 10880 . . . . . . . . . . 11 -1 = (0 − 1)
1615eqcomi 2807 . . . . . . . . . 10 (0 − 1) = -1
1716oveq2i 7156 . . . . . . . . 9 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1)
18 fourierdlem36.n . . . . . . . . 9 𝑁 = ((♯‘𝐴) − 1)
1914, 17, 183eqtr4g 2858 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁)
2019oveq2d 7161 . . . . . . 7 (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁))
21 isoeq4 7062 . . . . . . 7 ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2322eubidv 2647 . . . . 5 (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)))
249, 23mpbid 235 . . . 4 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))
25 iotacl 6318 . . . 4 (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
2624, 25syl 17 . . 3 (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
271, 26eqeltrid 2894 . 2 (𝜑𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
28 iotaex 6312 . . . 4 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V
291, 28eqeltri 2886 . . 3 𝐹 ∈ V
30 isoeq1 7059 . . 3 (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)))
3129, 30elab 3616 . 2 (𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))
3227, 31sylib 221 1 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∃!weu 2628  {cab 2776  Vcvv 3442   ⊆ wss 3883   Or wor 5441  ℩cio 6289  ‘cfv 6332   Isom wiso 6333  (class class class)co 7145  Fincfn 8510  ℝcr 10543  0cc0 10544  1c1 10545   + caddc 10547   < clt 10682   − cmin 10877  -cneg 10878  ℕ0cn0 11903  ...cfz 12905  ♯chash 13706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-hash 13707 This theorem is referenced by:  fourierdlem50  42966  fourierdlem51  42967  fourierdlem52  42968  fourierdlem54  42970  fourierdlem76  42992  fourierdlem102  43018  fourierdlem103  43019  fourierdlem104  43020  fourierdlem114  43030
 Copyright terms: Public domain W3C validator