Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem36 Structured version   Visualization version   GIF version

Theorem fourierdlem36 41970
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem36.a (𝜑𝐴 ∈ Fin)
fourierdlem36.assr (𝜑𝐴 ⊆ ℝ)
fourierdlem36.f 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
fourierdlem36.n 𝑁 = ((♯‘𝐴) − 1)
Assertion
Ref Expression
fourierdlem36 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑁   𝜑,𝑓

Proof of Theorem fourierdlem36
StepHypRef Expression
1 fourierdlem36.f . . 3 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
2 fourierdlem36.a . . . . . 6 (𝜑𝐴 ∈ Fin)
3 fourierdlem36.assr . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
4 ltso 10568 . . . . . . 7 < Or ℝ
5 soss 5381 . . . . . . 7 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
63, 4, 5mpisyl 21 . . . . . 6 (𝜑 → < Or 𝐴)
7 0zd 11841 . . . . . 6 (𝜑 → 0 ∈ ℤ)
8 eqid 2795 . . . . . 6 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1))
92, 6, 7, 8fzisoeu 41108 . . . . 5 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴))
10 hashcl 13567 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
112, 10syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1211nn0cnd 11805 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℂ)
13 1cnd 10482 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1412, 13negsubd 10851 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1))
15 df-neg 10720 . . . . . . . . . . 11 -1 = (0 − 1)
1615eqcomi 2804 . . . . . . . . . 10 (0 − 1) = -1
1716oveq2i 7027 . . . . . . . . 9 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1)
18 fourierdlem36.n . . . . . . . . 9 𝑁 = ((♯‘𝐴) − 1)
1914, 17, 183eqtr4g 2856 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁)
2019oveq2d 7032 . . . . . . 7 (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁))
21 isoeq4 6936 . . . . . . 7 ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2322eubidv 2632 . . . . 5 (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)))
249, 23mpbid 233 . . . 4 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))
25 iotacl 6212 . . . 4 (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
2624, 25syl 17 . . 3 (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
271, 26syl5eqel 2887 . 2 (𝜑𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
28 iotaex 6206 . . . 4 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V
291, 28eqeltri 2879 . . 3 𝐹 ∈ V
30 isoeq1 6933 . . 3 (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)))
3129, 30elab 3605 . 2 (𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))
3227, 31sylib 219 1 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1522  wcel 2081  ∃!weu 2611  {cab 2775  Vcvv 3437  wss 3859   Or wor 5361  cio 6187  cfv 6225   Isom wiso 6226  (class class class)co 7016  Fincfn 8357  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cmin 10717  -cneg 10718  0cn0 11745  ...cfz 12742  chash 13540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-hash 13541
This theorem is referenced by:  fourierdlem50  41983  fourierdlem51  41984  fourierdlem52  41985  fourierdlem54  41987  fourierdlem76  42009  fourierdlem102  42035  fourierdlem103  42036  fourierdlem104  42037  fourierdlem114  42047
  Copyright terms: Public domain W3C validator