Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem36 Structured version   Visualization version   GIF version

Theorem fourierdlem36 46124
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem36.a (𝜑𝐴 ∈ Fin)
fourierdlem36.assr (𝜑𝐴 ⊆ ℝ)
fourierdlem36.f 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
fourierdlem36.n 𝑁 = ((♯‘𝐴) − 1)
Assertion
Ref Expression
fourierdlem36 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑁   𝜑,𝑓

Proof of Theorem fourierdlem36
StepHypRef Expression
1 fourierdlem36.f . . 3 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
2 fourierdlem36.a . . . . . 6 (𝜑𝐴 ∈ Fin)
3 fourierdlem36.assr . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
4 ltso 11196 . . . . . . 7 < Or ℝ
5 soss 5547 . . . . . . 7 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
63, 4, 5mpisyl 21 . . . . . 6 (𝜑 → < Or 𝐴)
7 0zd 12483 . . . . . 6 (𝜑 → 0 ∈ ℤ)
8 eqid 2729 . . . . . 6 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1))
92, 6, 7, 8fzisoeu 45282 . . . . 5 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴))
10 hashcl 14263 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
112, 10syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1211nn0cnd 12447 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℂ)
13 1cnd 11110 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1412, 13negsubd 11481 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1))
15 df-neg 11350 . . . . . . . . . . 11 -1 = (0 − 1)
1615eqcomi 2738 . . . . . . . . . 10 (0 − 1) = -1
1716oveq2i 7360 . . . . . . . . 9 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1)
18 fourierdlem36.n . . . . . . . . 9 𝑁 = ((♯‘𝐴) − 1)
1914, 17, 183eqtr4g 2789 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁)
2019oveq2d 7365 . . . . . . 7 (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁))
21 isoeq4 7257 . . . . . . 7 ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2322eubidv 2579 . . . . 5 (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)))
249, 23mpbid 232 . . . 4 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))
25 iotacl 6468 . . . 4 (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
2624, 25syl 17 . . 3 (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
271, 26eqeltrid 2832 . 2 (𝜑𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
28 iotaex 6458 . . . 4 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V
291, 28eqeltri 2824 . . 3 𝐹 ∈ V
30 isoeq1 7254 . . 3 (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)))
3129, 30elab 3635 . 2 (𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))
3227, 31sylib 218 1 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ∃!weu 2561  {cab 2707  Vcvv 3436  wss 3903   Or wor 5526  cio 6436  cfv 6482   Isom wiso 6483  (class class class)co 7349  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  -cneg 11348  0cn0 12384  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  fourierdlem50  46137  fourierdlem51  46138  fourierdlem52  46139  fourierdlem54  46141  fourierdlem76  46163  fourierdlem102  46189  fourierdlem103  46190  fourierdlem104  46191  fourierdlem114  46201
  Copyright terms: Public domain W3C validator