| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem36 | Structured version Visualization version GIF version | ||
| Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem36.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fourierdlem36.assr | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| fourierdlem36.f | ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) |
| fourierdlem36.n | ⊢ 𝑁 = ((♯‘𝐴) − 1) |
| Ref | Expression |
|---|---|
| fourierdlem36 | ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem36.f | . . 3 ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) | |
| 2 | fourierdlem36.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 3 | fourierdlem36.assr | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 4 | ltso 11193 | . . . . . . 7 ⊢ < Or ℝ | |
| 5 | soss 5542 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
| 6 | 3, 4, 5 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → < Or 𝐴) |
| 7 | 0zd 12480 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1)) | |
| 9 | 2, 6, 7, 8 | fzisoeu 45411 | . . . . 5 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴)) |
| 10 | hashcl 14263 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 11 | 2, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 12 | 11 | nn0cnd 12444 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
| 13 | 1cnd 11107 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 14 | 12, 13 | negsubd 11478 | . . . . . . . . 9 ⊢ (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1)) |
| 15 | df-neg 11347 | . . . . . . . . . . 11 ⊢ -1 = (0 − 1) | |
| 16 | 15 | eqcomi 2740 | . . . . . . . . . 10 ⊢ (0 − 1) = -1 |
| 17 | 16 | oveq2i 7357 | . . . . . . . . 9 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1) |
| 18 | fourierdlem36.n | . . . . . . . . 9 ⊢ 𝑁 = ((♯‘𝐴) − 1) | |
| 19 | 14, 17, 18 | 3eqtr4g 2791 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁) |
| 20 | 19 | oveq2d 7362 | . . . . . . 7 ⊢ (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁)) |
| 21 | isoeq4 7254 | . . . . . . 7 ⊢ ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) | |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
| 23 | 22 | eubidv 2581 | . . . . 5 ⊢ (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
| 24 | 9, 23 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)) |
| 25 | iotacl 6467 | . . . 4 ⊢ (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) | |
| 26 | 24, 25 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
| 27 | 1, 26 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
| 28 | iotaex 6457 | . . . 4 ⊢ (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V | |
| 29 | 1, 28 | eqeltri 2827 | . . 3 ⊢ 𝐹 ∈ V |
| 30 | isoeq1 7251 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))) | |
| 31 | 29, 30 | elab 3630 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
| 32 | 27, 31 | sylib 218 | 1 ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 {cab 2709 Vcvv 3436 ⊆ wss 3897 Or wor 5521 ℩cio 6435 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 Fincfn 8869 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 -cneg 11345 ℕ0cn0 12381 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: fourierdlem50 46264 fourierdlem51 46265 fourierdlem52 46266 fourierdlem54 46268 fourierdlem76 46290 fourierdlem102 46316 fourierdlem103 46317 fourierdlem104 46318 fourierdlem114 46328 |
| Copyright terms: Public domain | W3C validator |