Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem36 Structured version   Visualization version   GIF version

Theorem fourierdlem36 45590
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem36.a (𝜑𝐴 ∈ Fin)
fourierdlem36.assr (𝜑𝐴 ⊆ ℝ)
fourierdlem36.f 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
fourierdlem36.n 𝑁 = ((♯‘𝐴) − 1)
Assertion
Ref Expression
fourierdlem36 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝑁   𝜑,𝑓

Proof of Theorem fourierdlem36
StepHypRef Expression
1 fourierdlem36.f . . 3 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴))
2 fourierdlem36.a . . . . . 6 (𝜑𝐴 ∈ Fin)
3 fourierdlem36.assr . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
4 ltso 11319 . . . . . . 7 < Or ℝ
5 soss 5605 . . . . . . 7 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
63, 4, 5mpisyl 21 . . . . . 6 (𝜑 → < Or 𝐴)
7 0zd 12595 . . . . . 6 (𝜑 → 0 ∈ ℤ)
8 eqid 2725 . . . . . 6 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1))
92, 6, 7, 8fzisoeu 44741 . . . . 5 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴))
10 hashcl 14342 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
112, 10syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1211nn0cnd 12559 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℂ)
13 1cnd 11234 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1412, 13negsubd 11602 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1))
15 df-neg 11472 . . . . . . . . . . 11 -1 = (0 − 1)
1615eqcomi 2734 . . . . . . . . . 10 (0 − 1) = -1
1716oveq2i 7424 . . . . . . . . 9 ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1)
18 fourierdlem36.n . . . . . . . . 9 𝑁 = ((♯‘𝐴) − 1)
1914, 17, 183eqtr4g 2790 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁)
2019oveq2d 7429 . . . . . . 7 (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁))
21 isoeq4 7321 . . . . . . 7 ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2220, 21syl 17 . . . . . 6 (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴)))
2322eubidv 2574 . . . . 5 (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)))
249, 23mpbid 231 . . . 4 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))
25 iotacl 6529 . . . 4 (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
2624, 25syl 17 . . 3 (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
271, 26eqeltrid 2829 . 2 (𝜑𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)})
28 iotaex 6516 . . . 4 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V
291, 28eqeltri 2821 . . 3 𝐹 ∈ V
30 isoeq1 7318 . . 3 (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)))
3129, 30elab 3661 . 2 (𝐹 ∈ {𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))
3227, 31sylib 217 1 (𝜑𝐹 Isom < , < ((0...𝑁), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  ∃!weu 2556  {cab 2702  Vcvv 3463  wss 3941   Or wor 5584  cio 6493  cfv 6543   Isom wiso 6544  (class class class)co 7413  Fincfn 8957  cr 11132  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273  cmin 11469  -cneg 11470  0cn0 12497  ...cfz 13511  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  fourierdlem50  45603  fourierdlem51  45604  fourierdlem52  45605  fourierdlem54  45607  fourierdlem76  45629  fourierdlem102  45655  fourierdlem103  45656  fourierdlem104  45657  fourierdlem114  45667
  Copyright terms: Public domain W3C validator