![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem36 | Structured version Visualization version GIF version |
Description: 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem36.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fourierdlem36.assr | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
fourierdlem36.f | ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) |
fourierdlem36.n | ⊢ 𝑁 = ((♯‘𝐴) − 1) |
Ref | Expression |
---|---|
fourierdlem36 | ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem36.f | . . 3 ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) | |
2 | fourierdlem36.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | fourierdlem36.assr | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | ltso 10568 | . . . . . . 7 ⊢ < Or ℝ | |
5 | soss 5381 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
6 | 3, 4, 5 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → < Or 𝐴) |
7 | 0zd 11841 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℤ) | |
8 | eqid 2795 | . . . . . 6 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + (0 − 1)) | |
9 | 2, 6, 7, 8 | fzisoeu 41108 | . . . . 5 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴)) |
10 | hashcl 13567 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
11 | 2, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
12 | 11 | nn0cnd 11805 | . . . . . . . . . 10 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
13 | 1cnd 10482 | . . . . . . . . . 10 ⊢ (𝜑 → 1 ∈ ℂ) | |
14 | 12, 13 | negsubd 10851 | . . . . . . . . 9 ⊢ (𝜑 → ((♯‘𝐴) + -1) = ((♯‘𝐴) − 1)) |
15 | df-neg 10720 | . . . . . . . . . . 11 ⊢ -1 = (0 − 1) | |
16 | 15 | eqcomi 2804 | . . . . . . . . . 10 ⊢ (0 − 1) = -1 |
17 | 16 | oveq2i 7027 | . . . . . . . . 9 ⊢ ((♯‘𝐴) + (0 − 1)) = ((♯‘𝐴) + -1) |
18 | fourierdlem36.n | . . . . . . . . 9 ⊢ 𝑁 = ((♯‘𝐴) − 1) | |
19 | 14, 17, 18 | 3eqtr4g 2856 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐴) + (0 − 1)) = 𝑁) |
20 | 19 | oveq2d 7032 | . . . . . . 7 ⊢ (𝜑 → (0...((♯‘𝐴) + (0 − 1))) = (0...𝑁)) |
21 | isoeq4 6936 | . . . . . . 7 ⊢ ((0...((♯‘𝐴) + (0 − 1))) = (0...𝑁) → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) | |
22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
23 | 22 | eubidv 2632 | . . . . 5 ⊢ (𝜑 → (∃!𝑓 𝑓 Isom < , < ((0...((♯‘𝐴) + (0 − 1))), 𝐴) ↔ ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴))) |
24 | 9, 23 | mpbid 233 | . . . 4 ⊢ (𝜑 → ∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴)) |
25 | iotacl 6212 | . . . 4 ⊢ (∃!𝑓 𝑓 Isom < , < ((0...𝑁), 𝐴) → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
27 | 1, 26 | syl5eqel 2887 | . 2 ⊢ (𝜑 → 𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)}) |
28 | iotaex 6206 | . . . 4 ⊢ (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) ∈ V | |
29 | 1, 28 | eqeltri 2879 | . . 3 ⊢ 𝐹 ∈ V |
30 | isoeq1 6933 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓 Isom < , < ((0...𝑁), 𝐴) ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴))) | |
31 | 29, 30 | elab 3605 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ 𝑓 Isom < , < ((0...𝑁), 𝐴)} ↔ 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
32 | 27, 31 | sylib 219 | 1 ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 ∃!weu 2611 {cab 2775 Vcvv 3437 ⊆ wss 3859 Or wor 5361 ℩cio 6187 ‘cfv 6225 Isom wiso 6226 (class class class)co 7016 Fincfn 8357 ℝcr 10382 0cc0 10383 1c1 10384 + caddc 10386 < clt 10521 − cmin 10717 -cneg 10718 ℕ0cn0 11745 ...cfz 12742 ♯chash 13540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-hash 13541 |
This theorem is referenced by: fourierdlem50 41983 fourierdlem51 41984 fourierdlem52 41985 fourierdlem54 41987 fourierdlem76 42009 fourierdlem102 42035 fourierdlem103 42036 fourierdlem104 42037 fourierdlem114 42047 |
Copyright terms: Public domain | W3C validator |