MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfictbso Structured version   Visualization version   GIF version

Theorem iunfictbso 10043
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
iunfictbso ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)

Proof of Theorem iunfictbso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9572 . . . . 5 ω ∈ V
210dom 9048 . . . 4 ∅ ≼ ω
3 breq1 5105 . . . 4 ( 𝐴 = ∅ → ( 𝐴 ≼ ω ↔ ∅ ≼ ω))
42, 3mpbiri 258 . . 3 ( 𝐴 = ∅ → 𝐴 ≼ ω)
54a1d 25 . 2 ( 𝐴 = ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
6 n0 4312 . . 3 ( 𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 𝐴)
7 ne0i 4300 . . . . . . . . . 10 (𝑎 𝐴 𝐴 ≠ ∅)
8 unieq 4878 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
9 uni0 4895 . . . . . . . . . . . 12 ∅ = ∅
108, 9eqtrdi 2780 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
1110necon3i 2957 . . . . . . . . . 10 ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅)
127, 11syl 17 . . . . . . . . 9 (𝑎 𝐴𝐴 ≠ ∅)
1312adantl 481 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≠ ∅)
14 simpl1 1192 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
15 ctex 8912 . . . . . . . . 9 (𝐴 ≼ ω → 𝐴 ∈ V)
16 0sdomg 9047 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1714, 15, 163syl 18 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1813, 17mpbird 257 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∅ ≺ 𝐴)
19 fodomr 9069 . . . . . . 7 ((∅ ≺ 𝐴𝐴 ≼ ω) → ∃𝑏 𝑏:ω–onto𝐴)
2018, 14, 19syl2anc 584 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∃𝑏 𝑏:ω–onto𝐴)
21 omelon 9575 . . . . . . . . . . . 12 ω ∈ On
22 onenon 9878 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
24 xpnum 9880 . . . . . . . . . . 11 ((ω ∈ dom card ∧ ω ∈ dom card) → (ω × ω) ∈ dom card)
2523, 23, 24mp2an 692 . . . . . . . . . 10 (ω × ω) ∈ dom card
26 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω–onto𝐴)
27 fof 6754 . . . . . . . . . . . . . . . . . . 19 (𝑏:ω–onto𝐴𝑏:ω⟶𝐴)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω⟶𝐴)
29 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑓 ∈ ω)
3028, 29ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ 𝐴)
3130adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ∈ 𝐴)
32 elssuni 4897 . . . . . . . . . . . . . . . 16 ((𝑏𝑓) ∈ 𝐴 → (𝑏𝑓) ⊆ 𝐴)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ⊆ 𝐴)
3430, 32syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ⊆ 𝐴)
35 simpll3 1215 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or 𝐴)
36 soss 5559 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑓) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑓)))
3734, 35, 36sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or (𝑏𝑓))
38 simpll2 1214 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐴 ⊆ Fin)
3938, 30sseldd 3944 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ Fin)
40 finnisoeu 10042 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Or (𝑏𝑓) ∧ (𝑏𝑓) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
42 iotacl 6485 . . . . . . . . . . . . . . . . . . 19 (∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
44 iotaex 6472 . . . . . . . . . . . . . . . . . . 19 (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ V
45 isoeq1 7274 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
46 isoeq1 7274 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
4746cbvabv 2799 . . . . . . . . . . . . . . . . . . 19 { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))}
4844, 45, 47elab2 3646 . . . . . . . . . . . . . . . . . 18 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4943, 48sylib 218 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
50 isof1o 7280 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓))
51 f1of 6782 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5249, 50, 513syl 18 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5352ffvelcdmda 7038 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ (𝑏𝑓))
5433, 53sseldd 3944 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ 𝐴)
55 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝑎 𝐴)
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ ¬ 𝑔 ∈ (card‘(𝑏𝑓))) → 𝑎 𝐴)
5754, 56ifclda 4520 . . . . . . . . . . . . 13 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
5857ralrimivva 3178 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
59 eqid 2729 . . . . . . . . . . . . 13 (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)) = (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))
6059fmpo 8026 . . . . . . . . . . . 12 (∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴 ↔ (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
6158, 60sylib 218 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
62 eluni 4870 . . . . . . . . . . . . 13 (𝑐 𝐴 ↔ ∃𝑖(𝑐𝑖𝑖𝐴))
63 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑏:ω–onto𝐴)
64 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑖𝐴)
65 foelrn 7061 . . . . . . . . . . . . . . . . 17 ((𝑏:ω–onto𝐴𝑖𝐴) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
6663, 64, 65syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
67 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑗 ∈ ω)
68 ordom 7832 . . . . . . . . . . . . . . . . . . . . . 22 Ord ω
69 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐴 ⊆ Fin)
70 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω–onto𝐴)
7170, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω⟶𝐴)
7271, 67ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ 𝐴)
7369, 72sseldd 3944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ Fin)
74 ficardom 9890 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑗) ∈ Fin → (card‘(𝑏𝑗)) ∈ ω)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ∈ ω)
76 ordelss 6336 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord ω ∧ (card‘(𝑏𝑗)) ∈ ω) → (card‘(𝑏𝑗)) ⊆ ω)
7768, 75, 76sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ⊆ ω)
78 elssuni 4897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏𝑗) ∈ 𝐴 → (𝑏𝑗) ⊆ 𝐴)
7972, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ⊆ 𝐴)
80 simpll3 1215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or 𝐴)
81 soss 5559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑗) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑗)))
8279, 80, 81sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or (𝑏𝑗))
83 finnisoeu 10042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 Or (𝑏𝑗) ∧ (𝑏𝑗) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
8482, 73, 83syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
85 iotacl 6485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
87 iotaex 6472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ V
88 isoeq1 7274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
89 isoeq1 7274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
9089cbvabv 2799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))}
9187, 88, 90elab2 3646 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
9286, 91sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
93 isof1o 7280 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
9492, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
95 f1ocnv 6794 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)))
96 f1of 6782 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
9794, 95, 963syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
98 simprll 778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐𝑖)
99 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑖 = (𝑏𝑗))
10098, 99eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 ∈ (𝑏𝑗))
10197, 100ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)))
10277, 101sseldd 3944 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω)
103 2fveq3 6845 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (card‘(𝑏𝑓)) = (card‘(𝑏𝑗)))
104103eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → (𝑔 ∈ (card‘(𝑏𝑓)) ↔ 𝑔 ∈ (card‘(𝑏𝑗))))
105 isoeq4 7277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘(𝑏𝑓)) = (card‘(𝑏𝑗)) → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
106103, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
107 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = 𝑗 → (𝑏𝑓) = (𝑏𝑗))
108 isoeq5 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑓) = (𝑏𝑗) → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
110106, 109bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
111110iotabidv 6483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
112111fveq1d 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔))
113104, 112ifbieq1d 4509 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑗 → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) = if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎))
114 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → (𝑔 ∈ (card‘(𝑏𝑗)) ↔ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗))))
115 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
116114, 115ifbieq1d 4509 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
117 fvex 6853 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) ∈ V
118 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎 ∈ V
119117, 118ifex 4535 . . . . . . . . . . . . . . . . . . . . . . 23 if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) ∈ V
120113, 116, 59, 119ovmpo 7529 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
12167, 102, 120syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
122101iftrued 4492 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
123 f1ocnvfv2 7234 . . . . . . . . . . . . . . . . . . . . . 22 (((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) ∧ 𝑐 ∈ (𝑏𝑗)) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
12494, 100, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
125121, 122, 1243eqtrrd 2769 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
126 rspceov 7418 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω ∧ 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
12767, 102, 125, 126syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
128127expr 456 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ((𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
129128expd 415 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (𝑗 ∈ ω → (𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))))
130129rexlimdv 3132 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (∃𝑗 ∈ ω 𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13166, 130mpd 15 . . . . . . . . . . . . . . 15 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
132131ex 412 . . . . . . . . . . . . . 14 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ((𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
133132exlimdv 1933 . . . . . . . . . . . . 13 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (∃𝑖(𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13462, 133biimtrid 242 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑐 𝐴 → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
135134ralrimiv 3124 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
136 foov 7543 . . . . . . . . . . 11 ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 ↔ ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴 ∧ ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13761, 135, 136sylanbrc 583 . . . . . . . . . 10 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴)
138 fodomnum 9986 . . . . . . . . . 10 ((ω × ω) ∈ dom card → ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 𝐴 ≼ (ω × ω)))
13925, 137, 138mpsyl 68 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ (ω × ω))
140 xpomen 9944 . . . . . . . . 9 (ω × ω) ≈ ω
141 domentr 8961 . . . . . . . . 9 (( 𝐴 ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → 𝐴 ≼ ω)
142139, 140, 141sylancl 586 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ ω)
143142expr 456 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (𝑏:ω–onto𝐴 𝐴 ≼ ω))
144143exlimdv 1933 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∃𝑏 𝑏:ω–onto𝐴 𝐴 ≼ ω))
14520, 144mpd 15 . . . . 5 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
146145expcom 413 . . . 4 (𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
147146exlimiv 1930 . . 3 (∃𝑎 𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1486, 147sylbi 217 . 2 ( 𝐴 ≠ ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1495, 148pm2.61ine 3008 1 ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292  ifcif 4484   cuni 4867   class class class wbr 5102   E cep 5530   Or wor 5538   × cxp 5629  ccnv 5630  dom cdm 5631  Ord word 6319  Oncon0 6320  cio 6450  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cmpo 7371  ωcom 7822  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-card 9868  df-acn 9871
This theorem is referenced by:  aannenlem3  26271
  Copyright terms: Public domain W3C validator