MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfictbso Structured version   Visualization version   GIF version

Theorem iunfictbso 10074
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
iunfictbso ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)

Proof of Theorem iunfictbso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9603 . . . . 5 ω ∈ V
210dom 9077 . . . 4 ∅ ≼ ω
3 breq1 5113 . . . 4 ( 𝐴 = ∅ → ( 𝐴 ≼ ω ↔ ∅ ≼ ω))
42, 3mpbiri 258 . . 3 ( 𝐴 = ∅ → 𝐴 ≼ ω)
54a1d 25 . 2 ( 𝐴 = ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
6 n0 4319 . . 3 ( 𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 𝐴)
7 ne0i 4307 . . . . . . . . . 10 (𝑎 𝐴 𝐴 ≠ ∅)
8 unieq 4885 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
9 uni0 4902 . . . . . . . . . . . 12 ∅ = ∅
108, 9eqtrdi 2781 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
1110necon3i 2958 . . . . . . . . . 10 ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅)
127, 11syl 17 . . . . . . . . 9 (𝑎 𝐴𝐴 ≠ ∅)
1312adantl 481 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≠ ∅)
14 simpl1 1192 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
15 ctex 8938 . . . . . . . . 9 (𝐴 ≼ ω → 𝐴 ∈ V)
16 0sdomg 9076 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1714, 15, 163syl 18 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1813, 17mpbird 257 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∅ ≺ 𝐴)
19 fodomr 9098 . . . . . . 7 ((∅ ≺ 𝐴𝐴 ≼ ω) → ∃𝑏 𝑏:ω–onto𝐴)
2018, 14, 19syl2anc 584 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∃𝑏 𝑏:ω–onto𝐴)
21 omelon 9606 . . . . . . . . . . . 12 ω ∈ On
22 onenon 9909 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
24 xpnum 9911 . . . . . . . . . . 11 ((ω ∈ dom card ∧ ω ∈ dom card) → (ω × ω) ∈ dom card)
2523, 23, 24mp2an 692 . . . . . . . . . 10 (ω × ω) ∈ dom card
26 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω–onto𝐴)
27 fof 6775 . . . . . . . . . . . . . . . . . . 19 (𝑏:ω–onto𝐴𝑏:ω⟶𝐴)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω⟶𝐴)
29 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑓 ∈ ω)
3028, 29ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ 𝐴)
3130adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ∈ 𝐴)
32 elssuni 4904 . . . . . . . . . . . . . . . 16 ((𝑏𝑓) ∈ 𝐴 → (𝑏𝑓) ⊆ 𝐴)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ⊆ 𝐴)
3430, 32syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ⊆ 𝐴)
35 simpll3 1215 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or 𝐴)
36 soss 5569 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑓) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑓)))
3734, 35, 36sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or (𝑏𝑓))
38 simpll2 1214 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐴 ⊆ Fin)
3938, 30sseldd 3950 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ Fin)
40 finnisoeu 10073 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Or (𝑏𝑓) ∧ (𝑏𝑓) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4137, 39, 40syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
42 iotacl 6500 . . . . . . . . . . . . . . . . . . 19 (∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
44 iotaex 6487 . . . . . . . . . . . . . . . . . . 19 (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ V
45 isoeq1 7295 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
46 isoeq1 7295 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
4746cbvabv 2800 . . . . . . . . . . . . . . . . . . 19 { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))}
4844, 45, 47elab2 3652 . . . . . . . . . . . . . . . . . 18 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4943, 48sylib 218 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
50 isof1o 7301 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓))
51 f1of 6803 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5249, 50, 513syl 18 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5352ffvelcdmda 7059 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ (𝑏𝑓))
5433, 53sseldd 3950 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ 𝐴)
55 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝑎 𝐴)
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ ¬ 𝑔 ∈ (card‘(𝑏𝑓))) → 𝑎 𝐴)
5754, 56ifclda 4527 . . . . . . . . . . . . 13 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
5857ralrimivva 3181 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
59 eqid 2730 . . . . . . . . . . . . 13 (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)) = (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))
6059fmpo 8050 . . . . . . . . . . . 12 (∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴 ↔ (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
6158, 60sylib 218 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
62 eluni 4877 . . . . . . . . . . . . 13 (𝑐 𝐴 ↔ ∃𝑖(𝑐𝑖𝑖𝐴))
63 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑏:ω–onto𝐴)
64 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑖𝐴)
65 foelrn 7082 . . . . . . . . . . . . . . . . 17 ((𝑏:ω–onto𝐴𝑖𝐴) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
6663, 64, 65syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
67 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑗 ∈ ω)
68 ordom 7855 . . . . . . . . . . . . . . . . . . . . . 22 Ord ω
69 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐴 ⊆ Fin)
70 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω–onto𝐴)
7170, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω⟶𝐴)
7271, 67ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ 𝐴)
7369, 72sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ Fin)
74 ficardom 9921 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑗) ∈ Fin → (card‘(𝑏𝑗)) ∈ ω)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ∈ ω)
76 ordelss 6351 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord ω ∧ (card‘(𝑏𝑗)) ∈ ω) → (card‘(𝑏𝑗)) ⊆ ω)
7768, 75, 76sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ⊆ ω)
78 elssuni 4904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏𝑗) ∈ 𝐴 → (𝑏𝑗) ⊆ 𝐴)
7972, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ⊆ 𝐴)
80 simpll3 1215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or 𝐴)
81 soss 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑗) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑗)))
8279, 80, 81sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or (𝑏𝑗))
83 finnisoeu 10073 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 Or (𝑏𝑗) ∧ (𝑏𝑗) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
8482, 73, 83syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
85 iotacl 6500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
87 iotaex 6487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ V
88 isoeq1 7295 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
89 isoeq1 7295 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
9089cbvabv 2800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))}
9187, 88, 90elab2 3652 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
9286, 91sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
93 isof1o 7301 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
9492, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
95 f1ocnv 6815 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)))
96 f1of 6803 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
9794, 95, 963syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
98 simprll 778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐𝑖)
99 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑖 = (𝑏𝑗))
10098, 99eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 ∈ (𝑏𝑗))
10197, 100ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)))
10277, 101sseldd 3950 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω)
103 2fveq3 6866 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (card‘(𝑏𝑓)) = (card‘(𝑏𝑗)))
104103eleq2d 2815 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → (𝑔 ∈ (card‘(𝑏𝑓)) ↔ 𝑔 ∈ (card‘(𝑏𝑗))))
105 isoeq4 7298 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘(𝑏𝑓)) = (card‘(𝑏𝑗)) → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
106103, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
107 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = 𝑗 → (𝑏𝑓) = (𝑏𝑗))
108 isoeq5 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑓) = (𝑏𝑗) → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
110106, 109bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
111110iotabidv 6498 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
112111fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔))
113104, 112ifbieq1d 4516 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑗 → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) = if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎))
114 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → (𝑔 ∈ (card‘(𝑏𝑗)) ↔ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗))))
115 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
116114, 115ifbieq1d 4516 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
117 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) ∈ V
118 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎 ∈ V
119117, 118ifex 4542 . . . . . . . . . . . . . . . . . . . . . . 23 if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) ∈ V
120113, 116, 59, 119ovmpo 7552 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
12167, 102, 120syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
122101iftrued 4499 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
123 f1ocnvfv2 7255 . . . . . . . . . . . . . . . . . . . . . 22 (((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) ∧ 𝑐 ∈ (𝑏𝑗)) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
12494, 100, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
125121, 122, 1243eqtrrd 2770 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
126 rspceov 7439 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω ∧ 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
12767, 102, 125, 126syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
128127expr 456 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ((𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
129128expd 415 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (𝑗 ∈ ω → (𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))))
130129rexlimdv 3133 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (∃𝑗 ∈ ω 𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13166, 130mpd 15 . . . . . . . . . . . . . . 15 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
132131ex 412 . . . . . . . . . . . . . 14 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ((𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
133132exlimdv 1933 . . . . . . . . . . . . 13 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (∃𝑖(𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13462, 133biimtrid 242 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑐 𝐴 → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
135134ralrimiv 3125 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
136 foov 7566 . . . . . . . . . . 11 ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 ↔ ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴 ∧ ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13761, 135, 136sylanbrc 583 . . . . . . . . . 10 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴)
138 fodomnum 10017 . . . . . . . . . 10 ((ω × ω) ∈ dom card → ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 𝐴 ≼ (ω × ω)))
13925, 137, 138mpsyl 68 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ (ω × ω))
140 xpomen 9975 . . . . . . . . 9 (ω × ω) ≈ ω
141 domentr 8987 . . . . . . . . 9 (( 𝐴 ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → 𝐴 ≼ ω)
142139, 140, 141sylancl 586 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ ω)
143142expr 456 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (𝑏:ω–onto𝐴 𝐴 ≼ ω))
144143exlimdv 1933 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∃𝑏 𝑏:ω–onto𝐴 𝐴 ≼ ω))
14520, 144mpd 15 . . . . 5 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
146145expcom 413 . . . 4 (𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
147146exlimiv 1930 . . 3 (∃𝑎 𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1486, 147sylbi 217 . 2 ( 𝐴 ≠ ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1495, 148pm2.61ine 3009 1 ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  ifcif 4491   cuni 4874   class class class wbr 5110   E cep 5540   Or wor 5548   × cxp 5639  ccnv 5640  dom cdm 5641  Ord word 6334  Oncon0 6335  cio 6465  wf 6510  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390  cmpo 7392  ωcom 7845  cen 8918  cdom 8919  csdm 8920  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-acn 9902
This theorem is referenced by:  aannenlem3  26245
  Copyright terms: Public domain W3C validator