MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfictbso Structured version   Visualization version   GIF version

Theorem iunfictbso 9801
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
iunfictbso ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)

Proof of Theorem iunfictbso
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9331 . . . . 5 ω ∈ V
210dom 8843 . . . 4 ∅ ≼ ω
3 breq1 5073 . . . 4 ( 𝐴 = ∅ → ( 𝐴 ≼ ω ↔ ∅ ≼ ω))
42, 3mpbiri 257 . . 3 ( 𝐴 = ∅ → 𝐴 ≼ ω)
54a1d 25 . 2 ( 𝐴 = ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
6 n0 4277 . . 3 ( 𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 𝐴)
7 ne0i 4265 . . . . . . . . . 10 (𝑎 𝐴 𝐴 ≠ ∅)
8 unieq 4847 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
9 uni0 4866 . . . . . . . . . . . 12 ∅ = ∅
108, 9eqtrdi 2795 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 = ∅)
1110necon3i 2975 . . . . . . . . . 10 ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅)
127, 11syl 17 . . . . . . . . 9 (𝑎 𝐴𝐴 ≠ ∅)
1312adantl 481 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≠ ∅)
14 simpl1 1189 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
15 ctex 8708 . . . . . . . . 9 (𝐴 ≼ ω → 𝐴 ∈ V)
16 0sdomg 8842 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1714, 15, 163syl 18 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
1813, 17mpbird 256 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∅ ≺ 𝐴)
19 fodomr 8864 . . . . . . 7 ((∅ ≺ 𝐴𝐴 ≼ ω) → ∃𝑏 𝑏:ω–onto𝐴)
2018, 14, 19syl2anc 583 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → ∃𝑏 𝑏:ω–onto𝐴)
21 omelon 9334 . . . . . . . . . . . 12 ω ∈ On
22 onenon 9638 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
24 xpnum 9640 . . . . . . . . . . 11 ((ω ∈ dom card ∧ ω ∈ dom card) → (ω × ω) ∈ dom card)
2523, 23, 24mp2an 688 . . . . . . . . . 10 (ω × ω) ∈ dom card
26 simplrr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω–onto𝐴)
27 fof 6672 . . . . . . . . . . . . . . . . . . 19 (𝑏:ω–onto𝐴𝑏:ω⟶𝐴)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑏:ω⟶𝐴)
29 simprl 767 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝑓 ∈ ω)
3028, 29ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ 𝐴)
3130adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ∈ 𝐴)
32 elssuni 4868 . . . . . . . . . . . . . . . 16 ((𝑏𝑓) ∈ 𝐴 → (𝑏𝑓) ⊆ 𝐴)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → (𝑏𝑓) ⊆ 𝐴)
3430, 32syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ⊆ 𝐴)
35 simpll3 1212 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or 𝐴)
36 soss 5514 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑓) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑓)))
3734, 35, 36sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐵 Or (𝑏𝑓))
38 simpll2 1211 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → 𝐴 ⊆ Fin)
3938, 30sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑏𝑓) ∈ Fin)
40 finnisoeu 9800 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Or (𝑏𝑓) ∧ (𝑏𝑓) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4137, 39, 40syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
42 iotacl 6404 . . . . . . . . . . . . . . . . . . 19 (∃! Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
4341, 42syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))})
44 iotaex 6398 . . . . . . . . . . . . . . . . . . 19 (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ V
45 isoeq1 7168 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
46 isoeq1 7168 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))))
4746cbvabv 2812 . . . . . . . . . . . . . . . . . . 19 { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))}
4844, 45, 47elab2 3606 . . . . . . . . . . . . . . . . . 18 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
4943, 48sylib 217 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))
50 isof1o 7174 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓))
51 f1of 6700 . . . . . . . . . . . . . . . . 17 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))–1-1-onto→(𝑏𝑓) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5249, 50, 513syl 18 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))):(card‘(𝑏𝑓))⟶(𝑏𝑓))
5352ffvelrnda 6943 . . . . . . . . . . . . . . 15 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ (𝑏𝑓))
5433, 53sseldd 3918 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ 𝑔 ∈ (card‘(𝑏𝑓))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) ∈ 𝐴)
55 simprl 767 . . . . . . . . . . . . . . 15 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝑎 𝐴)
5655ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) ∧ ¬ 𝑔 ∈ (card‘(𝑏𝑓))) → 𝑎 𝐴)
5754, 56ifclda 4491 . . . . . . . . . . . . 13 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
5857ralrimivva 3114 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴)
59 eqid 2738 . . . . . . . . . . . . 13 (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)) = (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))
6059fmpo 7881 . . . . . . . . . . . 12 (∀𝑓 ∈ ω ∀𝑔 ∈ ω if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) ∈ 𝐴 ↔ (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
6158, 60sylib 217 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴)
62 eluni 4839 . . . . . . . . . . . . 13 (𝑐 𝐴 ↔ ∃𝑖(𝑐𝑖𝑖𝐴))
63 simplrr 774 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑏:ω–onto𝐴)
64 simprr 769 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → 𝑖𝐴)
65 foelrn 6964 . . . . . . . . . . . . . . . . 17 ((𝑏:ω–onto𝐴𝑖𝐴) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
6663, 64, 65syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑗 ∈ ω 𝑖 = (𝑏𝑗))
67 simprrl 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑗 ∈ ω)
68 ordom 7697 . . . . . . . . . . . . . . . . . . . . . 22 Ord ω
69 simpll2 1211 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐴 ⊆ Fin)
70 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω–onto𝐴)
7170, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑏:ω⟶𝐴)
7271, 67ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ 𝐴)
7369, 72sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ∈ Fin)
74 ficardom 9650 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑗) ∈ Fin → (card‘(𝑏𝑗)) ∈ ω)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ∈ ω)
76 ordelss 6267 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord ω ∧ (card‘(𝑏𝑗)) ∈ ω) → (card‘(𝑏𝑗)) ⊆ ω)
7768, 75, 76sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (card‘(𝑏𝑗)) ⊆ ω)
78 elssuni 4868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏𝑗) ∈ 𝐴 → (𝑏𝑗) ⊆ 𝐴)
7972, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑏𝑗) ⊆ 𝐴)
80 simpll3 1212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or 𝐴)
81 soss 5514 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑗) ⊆ 𝐴 → (𝐵 Or 𝐴𝐵 Or (𝑏𝑗)))
8279, 80, 81sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝐵 Or (𝑏𝑗))
83 finnisoeu 9800 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 Or (𝑏𝑗) ∧ (𝑏𝑗) ∈ Fin) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
8482, 73, 83syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
85 iotacl 6404 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃! Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))})
87 iotaex 6398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ V
88 isoeq1 7168 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) → (𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
89 isoeq1 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑎 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) ↔ 𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
9089cbvabv 2812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} = {𝑎𝑎 Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))}
9187, 88, 90elab2 3606 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) ∈ { Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))} ↔ (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
9286, 91sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))
93 isof1o 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))) Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
9492, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗))
95 f1ocnv 6712 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)))
96 f1of 6700 . . . . . . . . . . . . . . . . . . . . . . 23 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)–1-1-onto→(card‘(𝑏𝑗)) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
9794, 95, 963syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(𝑏𝑗)⟶(card‘(𝑏𝑗)))
98 simprll 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐𝑖)
99 simprrr 778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑖 = (𝑏𝑗))
10098, 99eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 ∈ (𝑏𝑗))
10197, 100ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)))
10277, 101sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω)
103 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (card‘(𝑏𝑓)) = (card‘(𝑏𝑗)))
104103eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → (𝑔 ∈ (card‘(𝑏𝑓)) ↔ 𝑔 ∈ (card‘(𝑏𝑗))))
105 isoeq4 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘(𝑏𝑓)) = (card‘(𝑏𝑗)) → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
106103, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓))))
107 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = 𝑗 → (𝑏𝑓) = (𝑏𝑗))
108 isoeq5 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑓) = (𝑏𝑗) → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
110106, 109bitrd 278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑗 → ( Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)) ↔ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
111110iotabidv 6402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑗 → (℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓))) = (℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))))
112111fveq1d 6758 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑗 → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔))
113104, 112ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑗 → if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎) = if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎))
114 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → (𝑔 ∈ (card‘(𝑏𝑗)) ↔ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗))))
115 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
116114, 115ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) → if(𝑔 ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑔), 𝑎) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
117 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) ∈ V
118 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎 ∈ V
119117, 118ifex 4506 . . . . . . . . . . . . . . . . . . . . . . 23 if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) ∈ V
120113, 116, 59, 119ovmpo 7411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
12167, 102, 120syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎))
122101iftrued 4464 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → if(((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ (card‘(𝑏𝑗)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)), 𝑎) = ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
123 f1ocnvfv2 7130 . . . . . . . . . . . . . . . . . . . . . 22 (((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗))):(card‘(𝑏𝑗))–1-1-onto→(𝑏𝑗) ∧ 𝑐 ∈ (𝑏𝑗)) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
12494, 100, 123syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)) = 𝑐)
125121, 122, 1243eqtrrd 2783 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐)))
126 rspceov 7302 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ω ∧ ((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐) ∈ ω ∧ 𝑐 = (𝑗(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))((℩ Isom E , 𝐵 ((card‘(𝑏𝑗)), (𝑏𝑗)))‘𝑐))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
12767, 102, 125, 126syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ ((𝑐𝑖𝑖𝐴) ∧ (𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)))) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
128127expr 456 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ((𝑗 ∈ ω ∧ 𝑖 = (𝑏𝑗)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
129128expd 415 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (𝑗 ∈ ω → (𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))))
130129rexlimdv 3211 . . . . . . . . . . . . . . . 16 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → (∃𝑗 ∈ ω 𝑖 = (𝑏𝑗) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13166, 130mpd 15 . . . . . . . . . . . . . . 15 ((((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) ∧ (𝑐𝑖𝑖𝐴)) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
132131ex 412 . . . . . . . . . . . . . 14 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ((𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
133132exlimdv 1937 . . . . . . . . . . . . 13 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (∃𝑖(𝑐𝑖𝑖𝐴) → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13462, 133syl5bi 241 . . . . . . . . . . . 12 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑐 𝐴 → ∃𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
135134ralrimiv 3106 . . . . . . . . . . 11 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒))
136 foov 7424 . . . . . . . . . . 11 ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 ↔ ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)⟶ 𝐴 ∧ ∀𝑐 𝐴𝑑 ∈ ω ∃𝑒 ∈ ω 𝑐 = (𝑑(𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎))𝑒)))
13761, 135, 136sylanbrc 582 . . . . . . . . . 10 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → (𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴)
138 fodomnum 9744 . . . . . . . . . 10 ((ω × ω) ∈ dom card → ((𝑓 ∈ ω, 𝑔 ∈ ω ↦ if(𝑔 ∈ (card‘(𝑏𝑓)), ((℩ Isom E , 𝐵 ((card‘(𝑏𝑓)), (𝑏𝑓)))‘𝑔), 𝑎)):(ω × ω)–onto 𝐴 𝐴 ≼ (ω × ω)))
13925, 137, 138mpsyl 68 . . . . . . . . 9 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ (ω × ω))
140 xpomen 9702 . . . . . . . . 9 (ω × ω) ≈ ω
141 domentr 8754 . . . . . . . . 9 (( 𝐴 ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → 𝐴 ≼ ω)
142139, 140, 141sylancl 585 . . . . . . . 8 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ (𝑎 𝐴𝑏:ω–onto𝐴)) → 𝐴 ≼ ω)
143142expr 456 . . . . . . 7 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (𝑏:ω–onto𝐴 𝐴 ≼ ω))
144143exlimdv 1937 . . . . . 6 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → (∃𝑏 𝑏:ω–onto𝐴 𝐴 ≼ ω))
14520, 144mpd 15 . . . . 5 (((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) ∧ 𝑎 𝐴) → 𝐴 ≼ ω)
146145expcom 413 . . . 4 (𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
147146exlimiv 1934 . . 3 (∃𝑎 𝑎 𝐴 → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1486, 147sylbi 216 . 2 ( 𝐴 ≠ ∅ → ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω))
1495, 148pm2.61ine 3027 1 ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  ifcif 4456   cuni 4836   class class class wbr 5070   E cep 5485   Or wor 5493   × cxp 5578  ccnv 5579  dom cdm 5580  Ord word 6250  Oncon0 6251  cio 6374  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  cmpo 7257  ωcom 7687  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628  df-acn 9631
This theorem is referenced by:  aannenlem3  25395
  Copyright terms: Public domain W3C validator