MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnvali Structured version   Visualization version   GIF version

Theorem psgnvali 19508
Description: A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnvali (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑇   𝑤,𝐷

Proof of Theorem psgnvali
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . 4 𝐺 = (SymGrp‘𝐷)
2 psgnval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
3 psgnval.n . . . 4 𝑁 = (pmSgn‘𝐷)
41, 2, 3psgnval 19507 . . 3 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
51, 2, 3psgneu 19506 . . . 4 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
6 iotacl 6542 . . . 4 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
75, 6syl 17 . . 3 (𝑃 ∈ dom 𝑁 → (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
84, 7eqeltrd 2826 . 2 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
9 fvex 6916 . . 3 (𝑁𝑃) ∈ V
10 eqeq1 2730 . . . . 5 (𝑠 = (𝑁𝑃) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (𝑁𝑃) = (-1↑(♯‘𝑤))))
1110anbi2d 628 . . . 4 (𝑠 = (𝑁𝑃) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤)))))
1211rexbidv 3169 . . 3 (𝑠 = (𝑁𝑃) → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤)))))
139, 12elab 3666 . 2 ((𝑁𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))} ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
148, 13sylib 217 1 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ∃!weu 2557  {cab 2703  wrex 3060  dom cdm 5684  ran crn 5685  cio 6506  cfv 6556  (class class class)co 7426  1c1 11161  -cneg 11497  cexp 14083  chash 14349  Word cword 14524   Σg cgsu 17457  SymGrpcsymg 19366  pmTrspcpmtr 19441  pmSgncpsgn 19489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-tpos 8243  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12599  df-z 12613  df-uz 12877  df-rp 13031  df-fz 13541  df-fzo 13684  df-seq 14024  df-exp 14084  df-hash 14350  df-word 14525  df-lsw 14573  df-concat 14581  df-s1 14606  df-substr 14651  df-pfx 14681  df-splice 14760  df-reverse 14769  df-s2 14859  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-tset 17287  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-mhm 18775  df-submnd 18776  df-efmnd 18861  df-grp 18933  df-minusg 18934  df-subg 19119  df-ghm 19209  df-gim 19255  df-oppg 19342  df-symg 19367  df-pmtr 19442  df-psgn 19491
This theorem is referenced by:  psgnran  19515  psgnghm  21578
  Copyright terms: Public domain W3C validator