MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnvali Structured version   Visualization version   GIF version

Theorem psgnvali 19499
Description: A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnvali (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑇   𝑤,𝐷

Proof of Theorem psgnvali
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . 4 𝐺 = (SymGrp‘𝐷)
2 psgnval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
3 psgnval.n . . . 4 𝑁 = (pmSgn‘𝐷)
41, 2, 3psgnval 19498 . . 3 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
51, 2, 3psgneu 19497 . . . 4 (𝑃 ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
6 iotacl 6528 . . . 4 (∃!𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
75, 6syl 17 . . 3 (𝑃 ∈ dom 𝑁 → (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
84, 7eqeltrd 2833 . 2 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))})
9 fvex 6900 . . 3 (𝑁𝑃) ∈ V
10 eqeq1 2738 . . . . 5 (𝑠 = (𝑁𝑃) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (𝑁𝑃) = (-1↑(♯‘𝑤))))
1110anbi2d 630 . . . 4 (𝑠 = (𝑁𝑃) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤)))))
1211rexbidv 3166 . . 3 (𝑠 = (𝑁𝑃) → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤)))))
139, 12elab 3663 . 2 ((𝑁𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))} ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
148, 13sylib 218 1 (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁𝑃) = (-1↑(♯‘𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  {cab 2712  wrex 3059  dom cdm 5667  ran crn 5668  cio 6493  cfv 6542  (class class class)co 7414  1c1 11139  -cneg 11476  cexp 14085  chash 14352  Word cword 14535   Σg cgsu 17461  SymGrpcsymg 19359  pmTrspcpmtr 19432  pmSgncpsgn 19480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-ot 4617  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-splice 14771  df-reverse 14780  df-s2 14870  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-tset 17296  df-0g 17462  df-gsum 17463  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18770  df-submnd 18771  df-efmnd 18856  df-grp 18928  df-minusg 18929  df-subg 19115  df-ghm 19205  df-gim 19251  df-oppg 19338  df-symg 19360  df-pmtr 19433  df-psgn 19482
This theorem is referenced by:  psgnran  19506  psgnghm  21565
  Copyright terms: Public domain W3C validator