| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnvali | Structured version Visualization version GIF version | ||
| Description: A finitary permutation has at least one representation for its parity. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnvali | ⊢ (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 2 | psgnval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 3 | psgnval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 4 | 1, 2, 3 | psgnval 19405 | . . 3 ⊢ (𝑃 ∈ dom 𝑁 → (𝑁‘𝑃) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 5 | 1, 2, 3 | psgneu 19404 | . . . 4 ⊢ (𝑃 ∈ dom 𝑁 → ∃!𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
| 6 | iotacl 6472 | . . . 4 ⊢ (∃!𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))}) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑃 ∈ dom 𝑁 → (℩𝑠∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))}) |
| 8 | 4, 7 | eqeltrd 2828 | . 2 ⊢ (𝑃 ∈ dom 𝑁 → (𝑁‘𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))}) |
| 9 | fvex 6839 | . . 3 ⊢ (𝑁‘𝑃) ∈ V | |
| 10 | eqeq1 2733 | . . . . 5 ⊢ (𝑠 = (𝑁‘𝑃) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) | |
| 11 | 10 | anbi2d 630 | . . . 4 ⊢ (𝑠 = (𝑁‘𝑃) → ((𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤))))) |
| 12 | 11 | rexbidv 3153 | . . 3 ⊢ (𝑠 = (𝑁‘𝑃) → (∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤))))) |
| 13 | 9, 12 | elab 3637 | . 2 ⊢ ((𝑁‘𝑃) ∈ {𝑠 ∣ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))} ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) |
| 14 | 8, 13 | sylib 218 | 1 ⊢ (𝑃 ∈ dom 𝑁 → ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ (𝑁‘𝑃) = (-1↑(♯‘𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 {cab 2707 ∃wrex 3053 dom cdm 5623 ran crn 5624 ℩cio 6440 ‘cfv 6486 (class class class)co 7353 1c1 11029 -cneg 11367 ↑cexp 13987 ♯chash 14256 Word cword 14439 Σg cgsu 17363 SymGrpcsymg 19267 pmTrspcpmtr 19339 pmSgncpsgn 19387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-word 14440 df-lsw 14489 df-concat 14497 df-s1 14522 df-substr 14567 df-pfx 14597 df-splice 14675 df-reverse 14684 df-s2 14774 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-tset 17199 df-0g 17364 df-gsum 17365 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-efmnd 18762 df-grp 18834 df-minusg 18835 df-subg 19021 df-ghm 19111 df-gim 19157 df-oppg 19244 df-symg 19268 df-pmtr 19340 df-psgn 19389 |
| This theorem is referenced by: psgnran 19413 psgnghm 21506 |
| Copyright terms: Public domain | W3C validator |