| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr1v | Structured version Visualization version GIF version | ||
| Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| Ref | Expression |
|---|---|
| acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| acycgr1v | ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyclispth 29760 | . . . . . . . . . . . 12 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Paths‘𝐺)𝑝) | |
| 2 | acycgrv.1 | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | pthhashvtx 35100 | . . . . . . . . . . . 12 ⊢ (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 4 | 1, 3 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 6 | breq2 5099 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) |
| 8 | 5, 7 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
| 9 | 8 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
| 10 | umgrn1cycl 29770 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1) | |
| 11 | 10 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1) |
| 12 | 11 | necomd 2980 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓)) |
| 13 | cycliswlk 29761 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 14 | wlkcl 29579 | . . . . . . . . . . . 12 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0) | |
| 15 | 14 | nn0red 12464 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ) |
| 16 | 1red 11135 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ) | |
| 17 | 15, 16 | ltlend 11279 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 20 | 9, 12, 19 | mpbir2and 713 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1) |
| 21 | nn0lt10b 12556 | . . . . . . . . 9 ⊢ ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) | |
| 22 | 13, 14, 21 | 3syl 18 | . . . . . . . 8 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
| 24 | 20, 23 | mpbid 232 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0) |
| 25 | hasheq0 14288 | . . . . . . 7 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
| 26 | 25 | elv 3443 | . . . . . 6 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
| 27 | 24, 26 | sylib 218 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅) |
| 28 | 27 | 3com23 1126 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅) |
| 29 | 28 | 3expia 1121 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
| 30 | 29 | alrimivv 1928 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
| 31 | isacycgr1 35118 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| 33 | 30, 32 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 0cc0 11028 1c1 11029 < clt 11168 ≤ cle 11169 ℕ0cn0 12402 ♯chash 14255 Vtxcvtx 28959 UMGraphcumgr 29044 Walkscwlks 29560 Pathscpths 29673 Cyclesccycls 29748 AcyclicGraphcacycgr 35114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-upgr 29045 df-umgr 29046 df-wlks 29563 df-trls 29654 df-pths 29677 df-cycls 29750 df-acycgr 35115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |