Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr1v Structured version   Visualization version   GIF version

Theorem acycgr1v 35204
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr1v ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr1v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cyclispth 29786 . . . . . . . . . . . 12 (𝑓(Cycles‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
2 acycgrv.1 . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32pthhashvtx 35183 . . . . . . . . . . . 12 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
41, 3syl 17 . . . . . . . . . . 11 (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
54adantr 480 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉))
6 breq2 5099 . . . . . . . . . . 11 ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
76adantl 481 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
85, 7mpbid 232 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
983adant1 1130 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
10 umgrn1cycl 29796 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1)
11103adant3 1132 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1)
1211necomd 2985 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓))
13 cycliswlk 29787 . . . . . . . . . 10 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
14 wlkcl 29605 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0)
1514nn0red 12453 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ)
16 1red 11123 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ)
1715, 16ltlend 11268 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
1813, 17syl 17 . . . . . . . . 9 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
19183ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
209, 12, 19mpbir2and 713 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1)
21 nn0lt10b 12545 . . . . . . . . 9 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2213, 14, 213syl 18 . . . . . . . 8 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
23223ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2420, 23mpbid 232 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0)
25 hasheq0 14280 . . . . . . 7 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2625elv 3443 . . . . . 6 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2724, 26sylib 218 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅)
28273com23 1126 . . . 4 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅)
29283expia 1121 . . 3 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
3029alrimivv 1929 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
31 isacycgr1 35201 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3231adantr 480 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3330, 32mpbird 257 1 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  wne 2930  Vcvv 3438  c0 4284   class class class wbr 5095  cfv 6489  0cc0 11016  1c1 11017   < clt 11156  cle 11157  0cn0 12391  chash 14247  Vtxcvtx 28985  UMGraphcumgr 29070  Walkscwlks 29586  Pathscpths 29699  Cyclesccycls 29774  AcyclicGraphcacycgr 35197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-upgr 29071  df-umgr 29072  df-wlks 29589  df-trls 29680  df-pths 29703  df-cycls 29776  df-acycgr 35198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator