Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr1v Structured version   Visualization version   GIF version

Theorem acycgr1v 35134
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr1v ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr1v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cyclispth 29830 . . . . . . . . . . . 12 (𝑓(Cycles‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
2 acycgrv.1 . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32pthhashvtx 35112 . . . . . . . . . . . 12 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
41, 3syl 17 . . . . . . . . . . 11 (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
54adantr 480 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉))
6 breq2 5152 . . . . . . . . . . 11 ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
76adantl 481 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
85, 7mpbid 232 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
983adant1 1129 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
10 umgrn1cycl 29837 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1)
11103adant3 1131 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1)
1211necomd 2994 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓))
13 cycliswlk 29831 . . . . . . . . . 10 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
14 wlkcl 29648 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0)
1514nn0red 12586 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ)
16 1red 11260 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ)
1715, 16ltlend 11404 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
1813, 17syl 17 . . . . . . . . 9 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
19183ad2ant2 1133 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
209, 12, 19mpbir2and 713 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1)
21 nn0lt10b 12678 . . . . . . . . 9 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2213, 14, 213syl 18 . . . . . . . 8 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
23223ad2ant2 1133 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2420, 23mpbid 232 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0)
25 hasheq0 14399 . . . . . . 7 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2625elv 3483 . . . . . 6 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2724, 26sylib 218 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅)
28273com23 1125 . . . 4 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅)
29283expia 1120 . . 3 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
3029alrimivv 1926 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
31 isacycgr1 35131 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3231adantr 480 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3330, 32mpbird 257 1 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  c0 4339   class class class wbr 5148  cfv 6563  0cc0 11153  1c1 11154   < clt 11293  cle 11294  0cn0 12524  chash 14366  Vtxcvtx 29028  UMGraphcumgr 29113  Walkscwlks 29629  Pathscpths 29745  Cyclesccycls 29818  AcyclicGraphcacycgr 35127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-upgr 29114  df-umgr 29115  df-wlks 29632  df-trls 29725  df-pths 29749  df-cycls 29820  df-acycgr 35128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator