![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr1v | Structured version Visualization version GIF version |
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
acycgr1v | ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclispth 29830 | . . . . . . . . . . . 12 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Paths‘𝐺)𝑝) | |
2 | acycgrv.1 | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | pthhashvtx 35112 | . . . . . . . . . . . 12 ⊢ (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
4 | 1, 3 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉)) |
6 | breq2 5152 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) | |
7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) |
8 | 5, 7 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
9 | 8 | 3adant1 1129 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
10 | umgrn1cycl 29837 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1) | |
11 | 10 | 3adant3 1131 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1) |
12 | 11 | necomd 2994 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓)) |
13 | cycliswlk 29831 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
14 | wlkcl 29648 | . . . . . . . . . . . 12 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0) | |
15 | 14 | nn0red 12586 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ) |
16 | 1red 11260 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ) | |
17 | 15, 16 | ltlend 11404 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
19 | 18 | 3ad2ant2 1133 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
20 | 9, 12, 19 | mpbir2and 713 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1) |
21 | nn0lt10b 12678 | . . . . . . . . 9 ⊢ ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) | |
22 | 13, 14, 21 | 3syl 18 | . . . . . . . 8 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
23 | 22 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
24 | 20, 23 | mpbid 232 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0) |
25 | hasheq0 14399 | . . . . . . 7 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
26 | 25 | elv 3483 | . . . . . 6 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
27 | 24, 26 | sylib 218 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅) |
28 | 27 | 3com23 1125 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅) |
29 | 28 | 3expia 1120 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
30 | 29 | alrimivv 1926 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
31 | isacycgr1 35131 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | |
32 | 31 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
33 | 30, 32 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 0cc0 11153 1c1 11154 < clt 11293 ≤ cle 11294 ℕ0cn0 12524 ♯chash 14366 Vtxcvtx 29028 UMGraphcumgr 29113 Walkscwlks 29629 Pathscpths 29745 Cyclesccycls 29818 AcyclicGraphcacycgr 35127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-upgr 29114 df-umgr 29115 df-wlks 29632 df-trls 29725 df-pths 29749 df-cycls 29820 df-acycgr 35128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |