Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr1v | Structured version Visualization version GIF version |
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
Ref | Expression |
---|---|
acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
acycgr1v | ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclispth 28066 | . . . . . . . . . . . 12 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Paths‘𝐺)𝑝) | |
2 | acycgrv.1 | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | pthhashvtx 32989 | . . . . . . . . . . . 12 ⊢ (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
4 | 1, 3 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉)) |
6 | breq2 5074 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) | |
7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) |
8 | 5, 7 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
9 | 8 | 3adant1 1128 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
10 | umgrn1cycl 28073 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1) | |
11 | 10 | 3adant3 1130 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1) |
12 | 11 | necomd 2998 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓)) |
13 | cycliswlk 28067 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
14 | wlkcl 27885 | . . . . . . . . . . . 12 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0) | |
15 | 14 | nn0red 12224 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ) |
16 | 1red 10907 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ) | |
17 | 15, 16 | ltlend 11050 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
19 | 18 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
20 | 9, 12, 19 | mpbir2and 709 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1) |
21 | nn0lt10b 12312 | . . . . . . . . 9 ⊢ ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) | |
22 | 13, 14, 21 | 3syl 18 | . . . . . . . 8 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
23 | 22 | 3ad2ant2 1132 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
24 | 20, 23 | mpbid 231 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0) |
25 | hasheq0 14006 | . . . . . . 7 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
26 | 25 | elv 3428 | . . . . . 6 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
27 | 24, 26 | sylib 217 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅) |
28 | 27 | 3com23 1124 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅) |
29 | 28 | 3expia 1119 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
30 | 29 | alrimivv 1932 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
31 | isacycgr1 33008 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | |
32 | 31 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
33 | 30, 32 | mpbird 256 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 ℕ0cn0 12163 ♯chash 13972 Vtxcvtx 27269 UMGraphcumgr 27354 Walkscwlks 27866 Pathscpths 27981 Cyclesccycls 28054 AcyclicGraphcacycgr 33004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-upgr 27355 df-umgr 27356 df-wlks 27869 df-trls 27962 df-pths 27985 df-cycls 28056 df-acycgr 33005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |