Mathbox for BTernaryTau < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr1v Structured version   Visualization version   GIF version

Theorem acycgr1v 32389
 Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr1v ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr1v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cyclispth 27570 . . . . . . . . . . . 12 (𝑓(Cycles‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
2 acycgrv.1 . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32pthhashvtx 32367 . . . . . . . . . . . 12 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
41, 3syl 17 . . . . . . . . . . 11 (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
54adantr 483 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉))
6 breq2 5061 . . . . . . . . . . 11 ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
76adantl 484 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
85, 7mpbid 234 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
983adant1 1125 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
10 umgrn1cycl 27577 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1)
11103adant3 1127 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1)
1211necomd 3069 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓))
13 cycliswlk 27571 . . . . . . . . . 10 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
14 wlkcl 27389 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0)
1514nn0red 11948 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ)
16 1red 10634 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ)
1715, 16ltlend 10777 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
1813, 17syl 17 . . . . . . . . 9 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
19183ad2ant2 1129 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
209, 12, 19mpbir2and 711 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1)
21 nn0lt10b 12036 . . . . . . . . 9 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2213, 14, 213syl 18 . . . . . . . 8 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
23223ad2ant2 1129 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2420, 23mpbid 234 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0)
25 hasheq0 13716 . . . . . . 7 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2625elv 3498 . . . . . 6 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2724, 26sylib 220 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅)
28273com23 1121 . . . 4 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅)
29283expia 1116 . . 3 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
3029alrimivv 1923 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
31 isacycgr1 32386 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3231adantr 483 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3330, 32mpbird 259 1 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1082  ∀wal 1529   = wceq 1531   ∈ wcel 2108   ≠ wne 3014  Vcvv 3493  ∅c0 4289   class class class wbr 5057  ‘cfv 6348  0cc0 10529  1c1 10530   < clt 10667   ≤ cle 10668  ℕ0cn0 11889  ♯chash 13682  Vtxcvtx 26773  UMGraphcumgr 26858  Walkscwlks 27370  Pathscpths 27485  Cyclesccycls 27558  AcyclicGraphcacycgr 32382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-upgr 26859  df-umgr 26860  df-wlks 27373  df-trls 27466  df-pths 27489  df-cycls 27560  df-acycgr 32383 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator