| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acycgr1v | Structured version Visualization version GIF version | ||
| Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| Ref | Expression |
|---|---|
| acycgrv.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| acycgr1v | ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyclispth 29734 | . . . . . . . . . . . 12 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Paths‘𝐺)𝑝) | |
| 2 | acycgrv.1 | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | pthhashvtx 35122 | . . . . . . . . . . . 12 ⊢ (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 4 | 1, 3 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉)) |
| 6 | breq2 5114 | . . . . . . . . . . 11 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1)) |
| 8 | 5, 7 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
| 9 | 8 | 3adant1 1130 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1) |
| 10 | umgrn1cycl 29744 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1) | |
| 11 | 10 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1) |
| 12 | 11 | necomd 2981 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓)) |
| 13 | cycliswlk 29735 | . . . . . . . . . 10 ⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) | |
| 14 | wlkcl 29550 | . . . . . . . . . . . 12 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0) | |
| 15 | 14 | nn0red 12511 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ) |
| 16 | 1red 11182 | . . . . . . . . . . 11 ⊢ (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ) | |
| 17 | 15, 16 | ltlend 11326 | . . . . . . . . . 10 ⊢ (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓)))) |
| 20 | 9, 12, 19 | mpbir2and 713 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1) |
| 21 | nn0lt10b 12603 | . . . . . . . . 9 ⊢ ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) | |
| 22 | 13, 14, 21 | 3syl 18 | . . . . . . . 8 ⊢ (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0)) |
| 24 | 20, 23 | mpbid 232 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0) |
| 25 | hasheq0 14335 | . . . . . . 7 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
| 26 | 25 | elv 3455 | . . . . . 6 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
| 27 | 24, 26 | sylib 218 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅) |
| 28 | 27 | 3com23 1126 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅) |
| 29 | 28 | 3expia 1121 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
| 30 | 29 | alrimivv 1928 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅)) |
| 31 | isacycgr1 35140 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| 33 | 30, 32 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 ℕ0cn0 12449 ♯chash 14302 Vtxcvtx 28930 UMGraphcumgr 29015 Walkscwlks 29531 Pathscpths 29647 Cyclesccycls 29722 AcyclicGraphcacycgr 35136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-upgr 29016 df-umgr 29017 df-wlks 29534 df-trls 29627 df-pths 29651 df-cycls 29724 df-acycgr 35137 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |