Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr1v Structured version   Visualization version   GIF version

Theorem acycgr1v 35154
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr1v ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr1v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cyclispth 29817 . . . . . . . . . . . 12 (𝑓(Cycles‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
2 acycgrv.1 . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32pthhashvtx 35133 . . . . . . . . . . . 12 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
41, 3syl 17 . . . . . . . . . . 11 (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
54adantr 480 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉))
6 breq2 5147 . . . . . . . . . . 11 ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
76adantl 481 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
85, 7mpbid 232 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
983adant1 1131 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
10 umgrn1cycl 29827 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1)
11103adant3 1133 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1)
1211necomd 2996 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓))
13 cycliswlk 29818 . . . . . . . . . 10 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
14 wlkcl 29633 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0)
1514nn0red 12588 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ)
16 1red 11262 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ)
1715, 16ltlend 11406 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
1813, 17syl 17 . . . . . . . . 9 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
19183ad2ant2 1135 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
209, 12, 19mpbir2and 713 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1)
21 nn0lt10b 12680 . . . . . . . . 9 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2213, 14, 213syl 18 . . . . . . . 8 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
23223ad2ant2 1135 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2420, 23mpbid 232 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0)
25 hasheq0 14402 . . . . . . 7 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2625elv 3485 . . . . . 6 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2724, 26sylib 218 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅)
28273com23 1127 . . . 4 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅)
29283expia 1122 . . 3 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
3029alrimivv 1928 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
31 isacycgr1 35151 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3231adantr 480 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3330, 32mpbird 257 1 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  cfv 6561  0cc0 11155  1c1 11156   < clt 11295  cle 11296  0cn0 12526  chash 14369  Vtxcvtx 29013  UMGraphcumgr 29098  Walkscwlks 29614  Pathscpths 29730  Cyclesccycls 29805  AcyclicGraphcacycgr 35147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-upgr 29099  df-umgr 29100  df-wlks 29617  df-trls 29710  df-pths 29734  df-cycls 29807  df-acycgr 35148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator