Step | Hyp | Ref
| Expression |
1 | | elrest 17055 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴))) |
2 | | elrest 17055 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴))) |
3 | 1, 2 | anbi12d 630 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) ↔ (∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴) ∧ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴)))) |
4 | | reeanv 3292 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) ↔ (∃𝑢 ∈ 𝐵 𝑎 = (𝑢 ∩ 𝐴) ∧ ∃𝑣 ∈ 𝐵 𝑏 = (𝑣 ∩ 𝐴))) |
5 | 3, 4 | bitr4di 288 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) ↔ ∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)))) |
6 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases) |
7 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑢 ∈ 𝐵) |
8 | | simplrr 774 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑣 ∈ 𝐵) |
9 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
10 | 9 | elin1d 4128 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢 ∩ 𝑣)) |
11 | | basis2 22009 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑢 ∈ 𝐵) ∧ (𝑣 ∈ 𝐵 ∧ 𝑐 ∈ (𝑢 ∩ 𝑣))) → ∃𝑧 ∈ 𝐵 (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣))) |
12 | 6, 7, 8, 10, 11 | syl22anc 835 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → ∃𝑧 ∈ 𝐵 (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣))) |
13 | | simplll 771 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V)) |
14 | 13 | simpld 494 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝐵 ∈ TopBases) |
15 | 13 | simprd 495 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝐴 ∈ V) |
16 | | simprl 767 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑧 ∈ 𝐵) |
17 | | elrestr 17056 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧 ∈ 𝐵) → (𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
18 | 14, 15, 16, 17 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴)) |
19 | | simprrl 777 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ 𝑧) |
20 | | simplr 765 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
21 | 20 | elin2d 4129 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ 𝐴) |
22 | 19, 21 | elind 4124 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑐 ∈ (𝑧 ∩ 𝐴)) |
23 | | simprrr 778 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → 𝑧 ⊆ (𝑢 ∩ 𝑣)) |
24 | 23 | ssrind 4166 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
25 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑧 ∩ 𝐴) → (𝑐 ∈ 𝑤 ↔ 𝑐 ∈ (𝑧 ∩ 𝐴))) |
26 | | sseq1 3942 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑧 ∩ 𝐴) → (𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴) ↔ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
27 | 25, 26 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑧 ∩ 𝐴) → ((𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧 ∩ 𝐴) ∧ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
28 | 27 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ 𝐴) ∈ (𝐵 ↾t 𝐴) ∧ (𝑐 ∈ (𝑧 ∩ 𝐴) ∧ (𝑧 ∩ 𝐴) ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
29 | 18, 22, 24, 28 | syl12anc 833 |
. . . . . . . . 9
⊢
(((((𝐵 ∈
TopBases ∧ 𝐴 ∈ V)
∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑐 ∈ 𝑧 ∧ 𝑧 ⊆ (𝑢 ∩ 𝑣)))) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
30 | 12, 29 | rexlimddv 3219 |
. . . . . . . 8
⊢ ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
31 | 30 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ∀𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
32 | | ineq12 4138 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑎 ∩ 𝑏) = ((𝑢 ∩ 𝐴) ∩ (𝑣 ∩ 𝐴))) |
33 | | inindir 4158 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝑣) ∩ 𝐴) = ((𝑢 ∩ 𝐴) ∩ (𝑣 ∩ 𝐴)) |
34 | 32, 33 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑎 ∩ 𝑏) = ((𝑢 ∩ 𝑣) ∩ 𝐴)) |
35 | 34 | sseq2d 3949 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (𝑤 ⊆ (𝑎 ∩ 𝑏) ↔ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴))) |
36 | 35 | anbi2d 628 |
. . . . . . . . 9
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ((𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ (𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
37 | 36 | rexbidv 3225 |
. . . . . . . 8
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ ∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
38 | 34, 37 | raleqbidv 3327 |
. . . . . . 7
⊢ ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → (∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)) ↔ ∀𝑐 ∈ ((𝑢 ∩ 𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ ((𝑢 ∩ 𝑣) ∩ 𝐴)))) |
39 | 31, 38 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
40 | 39 | rexlimdvva 3222 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢 ∈ 𝐵 ∃𝑣 ∈ 𝐵 (𝑎 = (𝑢 ∩ 𝐴) ∧ 𝑏 = (𝑣 ∩ 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
41 | 5, 40 | sylbid 239 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵 ↾t 𝐴) ∧ 𝑏 ∈ (𝐵 ↾t 𝐴)) → ∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
42 | 41 | ralrimivv 3113 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏))) |
43 | | ovex 7288 |
. . . 4
⊢ (𝐵 ↾t 𝐴) ∈ V |
44 | | isbasis2g 22006 |
. . . 4
⊢ ((𝐵 ↾t 𝐴) ∈ V → ((𝐵 ↾t 𝐴) ∈ TopBases ↔
∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏)))) |
45 | 43, 44 | ax-mp 5 |
. . 3
⊢ ((𝐵 ↾t 𝐴) ∈ TopBases ↔
∀𝑎 ∈ (𝐵 ↾t 𝐴)∀𝑏 ∈ (𝐵 ↾t 𝐴)∀𝑐 ∈ (𝑎 ∩ 𝑏)∃𝑤 ∈ (𝐵 ↾t 𝐴)(𝑐 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑎 ∩ 𝑏))) |
46 | 42, 45 | sylibr 233 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝐵 ↾t 𝐴) ∈
TopBases) |
47 | | relxp 5598 |
. . . . . 6
⊢ Rel (V
× V) |
48 | | restfn 17052 |
. . . . . . . 8
⊢
↾t Fn (V × V) |
49 | | fndm 6520 |
. . . . . . . 8
⊢ (
↾t Fn (V × V) → dom ↾t = (V
× V)) |
50 | 48, 49 | ax-mp 5 |
. . . . . . 7
⊢ dom
↾t = (V × V) |
51 | 50 | releqi 5678 |
. . . . . 6
⊢ (Rel dom
↾t ↔ Rel (V × V)) |
52 | 47, 51 | mpbir 230 |
. . . . 5
⊢ Rel dom
↾t |
53 | 52 | ovprc2 7295 |
. . . 4
⊢ (¬
𝐴 ∈ V → (𝐵 ↾t 𝐴) = ∅) |
54 | 53 | adantl 481 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ ¬
𝐴 ∈ V) → (𝐵 ↾t 𝐴) = ∅) |
55 | | fi0 9109 |
. . . 4
⊢
(fi‘∅) = ∅ |
56 | | fibas 22035 |
. . . 4
⊢
(fi‘∅) ∈ TopBases |
57 | 55, 56 | eqeltrri 2836 |
. . 3
⊢ ∅
∈ TopBases |
58 | 54, 57 | eqeltrdi 2847 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ ¬
𝐴 ∈ V) → (𝐵 ↾t 𝐴) ∈
TopBases) |
59 | 46, 58 | pm2.61dan 809 |
1
⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈
TopBases) |