MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restbas Structured version   Visualization version   GIF version

Theorem restbas 23082
Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbas (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)

Proof of Theorem restbas
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrest 17416 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵t 𝐴) ↔ ∃𝑢𝐵 𝑎 = (𝑢𝐴)))
2 elrest 17416 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵t 𝐴) ↔ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
31, 2anbi12d 630 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴))))
4 reeanv 3224 . . . . . 6 (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
53, 4bitr4di 288 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ ∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴))))
6 simplll 773 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases)
7 simplrl 775 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑢𝐵)
8 simplrr 776 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑣𝐵)
9 simpr 483 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
109elin1d 4200 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢𝑣))
11 basis2 22874 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢𝐵) ∧ (𝑣𝐵𝑐 ∈ (𝑢𝑣))) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
126, 7, 8, 10, 11syl22anc 837 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
13 simplll 773 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V))
1413simpld 493 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐵 ∈ TopBases)
1513simprd 494 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐴 ∈ V)
16 simprl 769 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧𝐵)
17 elrestr 17417 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧𝐵) → (𝑧𝐴) ∈ (𝐵t 𝐴))
1814, 15, 16, 17syl3anc 1368 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ∈ (𝐵t 𝐴))
19 simprrl 779 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝑧)
20 simplr 767 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
2120elin2d 4201 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝐴)
2219, 21elind 4196 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ (𝑧𝐴))
23 simprrr 780 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧 ⊆ (𝑢𝑣))
2423ssrind 4238 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
25 eleq2 2818 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑐𝑤𝑐 ∈ (𝑧𝐴)))
26 sseq1 4007 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴) ↔ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴)))
2725, 26anbi12d 630 . . . . . . . . . . 11 (𝑤 = (𝑧𝐴) → ((𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))))
2827rspcev 3611 . . . . . . . . . 10 (((𝑧𝐴) ∈ (𝐵t 𝐴) ∧ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
2918, 22, 24, 28syl12anc 835 . . . . . . . . 9 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3012, 29rexlimddv 3158 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3130ralrimiva 3143 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
32 ineq12 4209 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝐴) ∩ (𝑣𝐴)))
33 inindir 4230 . . . . . . . . 9 ((𝑢𝑣) ∩ 𝐴) = ((𝑢𝐴) ∩ (𝑣𝐴))
3432, 33eqtr4di 2786 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝑣) ∩ 𝐴))
3534sseq2d 4014 . . . . . . . . . 10 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑤 ⊆ (𝑎𝑏) ↔ 𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3635anbi2d 628 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ((𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ (𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
3736rexbidv 3176 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
3834, 37raleqbidv 3340 . . . . . . 7 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
3931, 38syl5ibrcom 246 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4039rexlimdvva 3209 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
415, 40sylbid 239 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4241ralrimivv 3196 . . 3 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
43 ovex 7459 . . . 4 (𝐵t 𝐴) ∈ V
44 isbasis2g 22871 . . . 4 ((𝐵t 𝐴) ∈ V → ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4543, 44ax-mp 5 . . 3 ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
4642, 45sylibr 233 . 2 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
47 relxp 5700 . . . . . 6 Rel (V × V)
48 restfn 17413 . . . . . . . 8 t Fn (V × V)
49 fndm 6662 . . . . . . . 8 ( ↾t Fn (V × V) → dom ↾t = (V × V))
5048, 49ax-mp 5 . . . . . . 7 dom ↾t = (V × V)
5150releqi 5783 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
5247, 51mpbir 230 . . . . 5 Rel dom ↾t
5352ovprc2 7466 . . . 4 𝐴 ∈ V → (𝐵t 𝐴) = ∅)
5453adantl 480 . . 3 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) = ∅)
55 fi0 9451 . . . 4 (fi‘∅) = ∅
56 fibas 22900 . . . 4 (fi‘∅) ∈ TopBases
5755, 56eqeltrri 2826 . . 3 ∅ ∈ TopBases
5854, 57eqeltrdi 2837 . 2 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
5946, 58pm2.61dan 811 1 (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  wrex 3067  Vcvv 3473  cin 3948  wss 3949  c0 4326   × cxp 5680  dom cdm 5682  Rel wrel 5687   Fn wfn 6548  cfv 6553  (class class class)co 7426  ficfi 9441  t crest 17409  TopBasesctb 22868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-en 8971  df-fin 8974  df-fi 9442  df-rest 17411  df-bases 22869
This theorem is referenced by:  resttop  23084  2ndcrest  23378
  Copyright terms: Public domain W3C validator