MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blbas Structured version   Visualization version   GIF version

Theorem blbas 23183
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)

Proof of Theorem blbas
Dummy variables 𝑥 𝑟 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 23182 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦))
2 simpll 767 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
3 elinel1 4085 . . . . . . . . . 10 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑥)
4 elunii 4801 . . . . . . . . . 10 ((𝑧𝑥𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
53, 4sylan 583 . . . . . . . . 9 ((𝑧 ∈ (𝑥𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
65ad2ant2lr 748 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ran (ball‘𝐷))
7 unirnbl 23173 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
87ad2antrr 726 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
96, 8eleqtrd 2835 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧𝑋)
10 blssex 23180 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
112, 9, 10syl2anc 587 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
121, 11mpbird 260 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
1312ex 416 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1413ralrimdva 3101 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1514ralrimivv 3102 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
16 fvex 6687 . . . 4 (ball‘𝐷) ∈ V
1716rnex 7643 . . 3 ran (ball‘𝐷) ∈ V
18 isbasis2g 21699 . . 3 (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1917, 18ax-mp 5 . 2 (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
2015, 19sylibr 237 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  Vcvv 3398  cin 3842  wss 3843   cuni 4796  ran crn 5526  cfv 6339  (class class class)co 7170  +crp 12472  ∞Metcxmet 20202  ballcbl 20204  TopBasesctb 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-psmet 20209  df-xmet 20210  df-bl 20212  df-bases 21697
This theorem is referenced by:  mopntopon  23192  elmopn  23195  imasf1oxms  23242  blssopn  23248  metss  23261
  Copyright terms: Public domain W3C validator