Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blbas | Structured version Visualization version GIF version |
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.) |
Ref | Expression |
---|---|
blbas | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blin2 23182 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦)) | |
2 | simpll 767 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | elinel1 4085 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (𝑥 ∩ 𝑦) → 𝑧 ∈ 𝑥) | |
4 | elunii 4801 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝑥 ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ∈ ∪ ran (ball‘𝐷)) | |
5 | 3, 4 | sylan 583 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝑥 ∩ 𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ∈ ∪ ran (ball‘𝐷)) |
6 | 5 | ad2ant2lr 748 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ∈ ∪ ran (ball‘𝐷)) |
7 | unirnbl 23173 | . . . . . . . . 9 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
8 | 7 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∪ ran (ball‘𝐷) = 𝑋) |
9 | 6, 8 | eleqtrd 2835 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ∈ 𝑋) |
10 | blssex 23180 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦))) | |
11 | 2, 9, 10 | syl2anc 587 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ 𝑦))) |
12 | 1, 11 | mpbird 260 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦))) |
13 | 12 | ex 416 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) |
14 | 13 | ralrimdva 3101 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) |
15 | 14 | ralrimivv 3102 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦))) |
16 | fvex 6687 | . . . 4 ⊢ (ball‘𝐷) ∈ V | |
17 | 16 | rnex 7643 | . . 3 ⊢ ran (ball‘𝐷) ∈ V |
18 | isbasis2g 21699 | . . 3 ⊢ (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦)))) | |
19 | 17, 18 | ax-mp 5 | . 2 ⊢ (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑥 ∩ 𝑦))) |
20 | 15, 19 | sylibr 237 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 Vcvv 3398 ∩ cin 3842 ⊆ wss 3843 ∪ cuni 4796 ran crn 5526 ‘cfv 6339 (class class class)co 7170 ℝ+crp 12472 ∞Metcxmet 20202 ballcbl 20204 TopBasesctb 21696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-n0 11977 df-z 12063 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-psmet 20209 df-xmet 20210 df-bl 20212 df-bases 21697 |
This theorem is referenced by: mopntopon 23192 elmopn 23195 imasf1oxms 23242 blssopn 23248 metss 23261 |
Copyright terms: Public domain | W3C validator |