MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blbas Structured version   Visualization version   GIF version

Theorem blbas 24355
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)

Proof of Theorem blbas
Dummy variables 𝑥 𝑟 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 24354 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦))
2 simpll 766 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
3 elinel1 4152 . . . . . . . . . 10 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑥)
4 elunii 4865 . . . . . . . . . 10 ((𝑧𝑥𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
53, 4sylan 580 . . . . . . . . 9 ((𝑧 ∈ (𝑥𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
65ad2ant2lr 748 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ran (ball‘𝐷))
7 unirnbl 24345 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
87ad2antrr 726 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
96, 8eleqtrd 2835 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧𝑋)
10 blssex 24352 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
112, 9, 10syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
121, 11mpbird 257 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
1312ex 412 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1413ralrimdva 3134 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1514ralrimivv 3175 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
16 fvex 6844 . . . 4 (ball‘𝐷) ∈ V
1716rnex 7849 . . 3 ran (ball‘𝐷) ∈ V
18 isbasis2g 22873 . . 3 (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1917, 18ax-mp 5 . 2 (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
2015, 19sylibr 234 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  Vcvv 3438  cin 3898  wss 3899   cuni 4860  ran crn 5622  cfv 6489  (class class class)co 7355  +crp 12900  ∞Metcxmet 21286  ballcbl 21288  TopBasesctb 22870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-psmet 21293  df-xmet 21294  df-bl 21296  df-bases 22871
This theorem is referenced by:  mopntopon  24364  elmopn  24367  imasf1oxms  24414  blssopn  24420  metss  24433
  Copyright terms: Public domain W3C validator