MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blbas Structured version   Visualization version   GIF version

Theorem blbas 24367
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)

Proof of Theorem blbas
Dummy variables 𝑥 𝑟 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 24366 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦))
2 simpll 766 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
3 elinel1 4176 . . . . . . . . . 10 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑥)
4 elunii 4888 . . . . . . . . . 10 ((𝑧𝑥𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
53, 4sylan 580 . . . . . . . . 9 ((𝑧 ∈ (𝑥𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
65ad2ant2lr 748 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ran (ball‘𝐷))
7 unirnbl 24357 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
87ad2antrr 726 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
96, 8eleqtrd 2836 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧𝑋)
10 blssex 24364 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
112, 9, 10syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
121, 11mpbird 257 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
1312ex 412 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1413ralrimdva 3140 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1514ralrimivv 3185 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
16 fvex 6888 . . . 4 (ball‘𝐷) ∈ V
1716rnex 7904 . . 3 ran (ball‘𝐷) ∈ V
18 isbasis2g 22884 . . 3 (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1917, 18ax-mp 5 . 2 (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
2015, 19sylibr 234 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926   cuni 4883  ran crn 5655  cfv 6530  (class class class)co 7403  +crp 13006  ∞Metcxmet 21298  ballcbl 21300  TopBasesctb 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-psmet 21305  df-xmet 21306  df-bl 21308  df-bases 22882
This theorem is referenced by:  mopntopon  24376  elmopn  24379  imasf1oxms  24426  blssopn  24432  metss  24445
  Copyright terms: Public domain W3C validator