| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgclb | Structured version Visualization version GIF version | ||
| Description: The property tgcl 22884 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgclb | ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcl 22884 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
| 2 | 0opn 22819 | . . . . . . . . . 10 ⊢ ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵)) | |
| 3 | 2 | elfvexd 6858 | . . . . . . . . 9 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V) |
| 4 | bastg 22881 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵)) |
| 6 | 5 | sselda 3929 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (topGen‘𝐵)) |
| 7 | 5 | sselda 3929 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (topGen‘𝐵)) |
| 8 | 6, 7 | anim12dan 619 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) |
| 9 | inopn 22814 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) | |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
| 11 | 8, 10 | syldan 591 | . . . . 5 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
| 12 | tg2 22880 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) | |
| 13 | 12 | ralrimiva 3124 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 15 | 14 | ralrimivva 3175 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 16 | isbasis2g 22863 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | |
| 17 | 3, 16 | syl 17 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
| 18 | 15, 17 | mpbird 257 | . 2 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases) |
| 19 | 1, 18 | impbii 209 | 1 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 topGenctg 17341 Topctop 22808 TopBasesctb 22860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 df-top 22809 df-bases 22861 |
| This theorem is referenced by: bastop2 22909 iocpnfordt 23130 icomnfordt 23131 iooordt 23132 tgcn 23167 tgcnp 23168 2ndcctbss 23370 2ndcomap 23373 dis2ndc 23375 flftg 23911 met2ndci 24437 xrtgioo 24722 topfneec 36399 |
| Copyright terms: Public domain | W3C validator |