MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Structured version   Visualization version   GIF version

Theorem tgclb 22855
Description: The property tgcl 22854 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)

Proof of Theorem tgclb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 22854 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 0opn 22789 . . . . . . . . . 10 ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵))
32elfvexd 6859 . . . . . . . . 9 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V)
4 bastg 22851 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵))
53, 4syl 17 . . . . . . . 8 ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵))
65sselda 3935 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
75sselda 3935 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑦𝐵) → 𝑦 ∈ (topGen‘𝐵))
86, 7anim12dan 619 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)))
9 inopn 22784 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
1093expb 1120 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥𝑦) ∈ (topGen‘𝐵))
118, 10syldan 591 . . . . 5 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
12 tg2 22850 . . . . . 6 (((𝑥𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1312ralrimiva 3121 . . . . 5 ((𝑥𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1411, 13syl 17 . . . 4 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1514ralrimivva 3172 . . 3 ((topGen‘𝐵) ∈ Top → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16 isbasis2g 22833 . . . 4 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
173, 16syl 17 . . 3 ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1815, 17mpbird 257 . 2 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases)
191, 18impbii 209 1 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  c0 4284  cfv 6482  topGenctg 17341  Topctop 22778  TopBasesctb 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topgen 17347  df-top 22779  df-bases 22831
This theorem is referenced by:  bastop2  22879  iocpnfordt  23100  icomnfordt  23101  iooordt  23102  tgcn  23137  tgcnp  23138  2ndcctbss  23340  2ndcomap  23343  dis2ndc  23345  flftg  23881  met2ndci  24408  xrtgioo  24693  topfneec  36339
  Copyright terms: Public domain W3C validator