| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgclb | Structured version Visualization version GIF version | ||
| Description: The property tgcl 22863 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgclb | ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcl 22863 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
| 2 | 0opn 22798 | . . . . . . . . . 10 ⊢ ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵)) | |
| 3 | 2 | elfvexd 6900 | . . . . . . . . 9 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V) |
| 4 | bastg 22860 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵)) |
| 6 | 5 | sselda 3949 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (topGen‘𝐵)) |
| 7 | 5 | sselda 3949 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (topGen‘𝐵)) |
| 8 | 6, 7 | anim12dan 619 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) |
| 9 | inopn 22793 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) | |
| 10 | 9 | 3expb 1120 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
| 11 | 8, 10 | syldan 591 | . . . . 5 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
| 12 | tg2 22859 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) | |
| 13 | 12 | ralrimiva 3126 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 15 | 14 | ralrimivva 3181 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
| 16 | isbasis2g 22842 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | |
| 17 | 3, 16 | syl 17 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
| 18 | 15, 17 | mpbird 257 | . 2 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases) |
| 19 | 1, 18 | impbii 209 | 1 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ‘cfv 6514 topGenctg 17407 Topctop 22787 TopBasesctb 22839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 df-top 22788 df-bases 22840 |
| This theorem is referenced by: bastop2 22888 iocpnfordt 23109 icomnfordt 23110 iooordt 23111 tgcn 23146 tgcnp 23147 2ndcctbss 23349 2ndcomap 23352 dis2ndc 23354 flftg 23890 met2ndci 24417 xrtgioo 24702 topfneec 36350 |
| Copyright terms: Public domain | W3C validator |