MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Structured version   Visualization version   GIF version

Theorem tgclb 22998
Description: The property tgcl 22997 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)

Proof of Theorem tgclb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 22997 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 0opn 22931 . . . . . . . . . 10 ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵))
32elfvexd 6959 . . . . . . . . 9 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V)
4 bastg 22994 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵))
53, 4syl 17 . . . . . . . 8 ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵))
65sselda 4008 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
75sselda 4008 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑦𝐵) → 𝑦 ∈ (topGen‘𝐵))
86, 7anim12dan 618 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)))
9 inopn 22926 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
1093expb 1120 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥𝑦) ∈ (topGen‘𝐵))
118, 10syldan 590 . . . . 5 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
12 tg2 22993 . . . . . 6 (((𝑥𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1312ralrimiva 3152 . . . . 5 ((𝑥𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1411, 13syl 17 . . . 4 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1514ralrimivva 3208 . . 3 ((topGen‘𝐵) ∈ Top → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16 isbasis2g 22976 . . . 4 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
173, 16syl 17 . . 3 ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1815, 17mpbird 257 . 2 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases)
191, 18impbii 209 1 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  cfv 6573  topGenctg 17497  Topctop 22920  TopBasesctb 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503  df-top 22921  df-bases 22974
This theorem is referenced by:  bastop2  23022  iocpnfordt  23244  icomnfordt  23245  iooordt  23246  tgcn  23281  tgcnp  23282  2ndcctbss  23484  2ndcomap  23487  dis2ndc  23489  flftg  24025  met2ndci  24556  xrtgioo  24847  topfneec  36321
  Copyright terms: Public domain W3C validator