Step | Hyp | Ref
| Expression |
1 | | inopn 21820 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∩ 𝑦) ∈ 𝐽) |
2 | 1 | 3expb 1122 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑥 ∩ 𝑦) ∈ 𝐽) |
3 | | simpr 488 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → 𝑧 ∈ (𝑥 ∩ 𝑦)) |
4 | | ssid 3937 |
. . . . . . 7
⊢ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦) |
5 | 3, 4 | jctir 524 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → (𝑧 ∈ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) |
6 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∩ 𝑦) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑥 ∩ 𝑦))) |
7 | | sseq1 3940 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∩ 𝑦) → (𝑤 ⊆ (𝑥 ∩ 𝑦) ↔ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) |
8 | 6, 7 | anbi12d 634 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∩ 𝑦) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)) ↔ (𝑧 ∈ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)))) |
9 | 8 | rspcev 3549 |
. . . . . 6
⊢ (((𝑥 ∩ 𝑦) ∈ 𝐽 ∧ (𝑧 ∈ (𝑥 ∩ 𝑦) ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) → ∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
10 | 2, 5, 9 | syl2an2r 685 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
11 | 10 | exp31 423 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽) → (𝑧 ∈ (𝑥 ∩ 𝑦) → ∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) |
12 | 11 | ralrimdv 3110 |
. . 3
⊢ (𝐽 ∈ Top → ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
13 | 12 | ralrimivv 3112 |
. 2
⊢ (𝐽 ∈ Top → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
14 | | isbasis2g 21869 |
. 2
⊢ (𝐽 ∈ Top → (𝐽 ∈ TopBases ↔
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐽 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
15 | 13, 14 | mpbird 260 |
1
⊢ (𝐽 ∈ Top → 𝐽 ∈
TopBases) |