Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscomlaw | Structured version Visualization version GIF version |
Description: The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
iscomlaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | oveq 7281 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
3 | oveq 7281 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑦𝑜𝑥) = (𝑦 ⚬ 𝑥)) | |
4 | 2, 3 | eqeq12d 2754 | . . . . 5 ⊢ (𝑜 = ⚬ → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
6 | 1, 5 | raleqbidv 3336 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
7 | 1, 6 | raleqbidv 3336 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
8 | df-comlaw 45381 | . 2 ⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} | |
9 | 7, 8 | brabga 5447 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 (class class class)co 7275 comLaw ccomlaw 45379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 df-comlaw 45381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |