Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscomlaw Structured version   Visualization version   GIF version

Theorem iscomlaw 45057
Description: The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
iscomlaw (( 𝑉𝑀𝑊) → ( comLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem iscomlaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 oveq 7219 . . . . . 6 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
3 oveq 7219 . . . . . 6 (𝑜 = → (𝑦𝑜𝑥) = (𝑦 𝑥))
42, 3eqeq12d 2753 . . . . 5 (𝑜 = → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
54adantr 484 . . . 4 ((𝑜 = 𝑚 = 𝑀) → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
61, 5raleqbidv 3313 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
71, 6raleqbidv 3313 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
8 df-comlaw 45054 . 2 comLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)}
97, 8brabga 5415 1 (( 𝑉𝑀𝑊) → ( comLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  (class class class)co 7213   comLaw ccomlaw 45052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-iota 6338  df-fv 6388  df-ov 7216  df-comlaw 45054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator