Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscomlaw Structured version   Visualization version   GIF version

Theorem iscomlaw 45272
Description: The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
iscomlaw (( 𝑉𝑀𝑊) → ( comLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem iscomlaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 oveq 7261 . . . . . 6 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
3 oveq 7261 . . . . . 6 (𝑜 = → (𝑦𝑜𝑥) = (𝑦 𝑥))
42, 3eqeq12d 2754 . . . . 5 (𝑜 = → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
54adantr 480 . . . 4 ((𝑜 = 𝑚 = 𝑀) → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
61, 5raleqbidv 3327 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
71, 6raleqbidv 3327 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
8 df-comlaw 45269 . 2 comLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)}
97, 8brabga 5440 1 (( 𝑉𝑀𝑊) → ( comLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) = (𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  (class class class)co 7255   comLaw ccomlaw 45267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-iota 6376  df-fv 6426  df-ov 7258  df-comlaw 45269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator