Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscomlaw | Structured version Visualization version GIF version |
Description: The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
iscomlaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | oveq 7219 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
3 | oveq 7219 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑦𝑜𝑥) = (𝑦 ⚬ 𝑥)) | |
4 | 2, 3 | eqeq12d 2753 | . . . . 5 ⊢ (𝑜 = ⚬ → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
5 | 4 | adantr 484 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → ((𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
6 | 1, 5 | raleqbidv 3313 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
7 | 1, 6 | raleqbidv 3313 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥) ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
8 | df-comlaw 45054 | . 2 ⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} | |
9 | 7, 8 | brabga 5415 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 (class class class)co 7213 comLaw ccomlaw 45052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-iota 6338 df-fv 6388 df-ov 7216 df-comlaw 45054 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |