Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clcllaw Structured version   Visualization version   GIF version

Theorem clcllaw 46591
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.)
Assertion
Ref Expression
clcllaw (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)

Proof of Theorem clcllaw
Dummy variables 𝑚 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cllaw 46586 . . . 4 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
21bropaex12 5767 . . 3 ( clLaw 𝑀 → ( ∈ V ∧ 𝑀 ∈ V))
3 iscllaw 46589 . . . 4 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
4 ovrspc2v 7434 . . . . 5 (((𝑋𝑀𝑌𝑀) ∧ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀) → (𝑋 𝑌) ∈ 𝑀)
54expcom 414 . . . 4 (∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
63, 5syl6bi 252 . . 3 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)))
72, 6mpcom 38 . 2 ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
873impib 1116 1 (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  wral 3061  Vcvv 3474   class class class wbr 5148  (class class class)co 7408   clLaw ccllaw 46583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-iota 6495  df-fv 6551  df-ov 7411  df-cllaw 46586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator