Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clcllaw Structured version   Visualization version   GIF version

Theorem clcllaw 45337
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.)
Assertion
Ref Expression
clcllaw (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)

Proof of Theorem clcllaw
Dummy variables 𝑚 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cllaw 45332 . . . 4 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
21bropaex12 5676 . . 3 ( clLaw 𝑀 → ( ∈ V ∧ 𝑀 ∈ V))
3 iscllaw 45335 . . . 4 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
4 ovrspc2v 7294 . . . . 5 (((𝑋𝑀𝑌𝑀) ∧ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀) → (𝑋 𝑌) ∈ 𝑀)
54expcom 413 . . . 4 (∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
63, 5syl6bi 252 . . 3 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)))
72, 6mpcom 38 . 2 ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
873impib 1114 1 (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109  wral 3065  Vcvv 3430   class class class wbr 5078  (class class class)co 7268   clLaw ccllaw 45329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-iota 6388  df-fv 6438  df-ov 7271  df-cllaw 45332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator