![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clcllaw | Structured version Visualization version GIF version |
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
clcllaw | ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cllaw 48030 | . . . 4 ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
2 | 1 | bropaex12 5780 | . . 3 ⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V)) |
3 | iscllaw 48033 | . . . 4 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
4 | ovrspc2v 7457 | . . . . 5 ⊢ (((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | |
5 | 4 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
6 | 3, 5 | biimtrdi 253 | . . 3 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀))) |
7 | 2, 6 | mpcom 38 | . 2 ⊢ ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
8 | 7 | 3impib 1115 | 1 ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 class class class wbr 5148 (class class class)co 7431 clLaw ccllaw 48027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-iota 6516 df-fv 6571 df-ov 7434 df-cllaw 48030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |