| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clcllaw | Structured version Visualization version GIF version | ||
| Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
| Ref | Expression |
|---|---|
| clcllaw | ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cllaw 48178 | . . . 4 ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
| 2 | 1 | bropaex12 5733 | . . 3 ⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V)) |
| 3 | iscllaw 48181 | . . . 4 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
| 4 | ovrspc2v 7416 | . . . . 5 ⊢ (((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | |
| 5 | 4 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
| 6 | 3, 5 | biimtrdi 253 | . . 3 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀))) |
| 7 | 2, 6 | mpcom 38 | . 2 ⊢ ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5110 (class class class)co 7390 clLaw ccllaw 48175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-iota 6467 df-fv 6522 df-ov 7393 df-cllaw 48178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |