![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clcllaw | Structured version Visualization version GIF version |
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
clcllaw | ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cllaw 47117 | . . . 4 ⊢ clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
2 | 1 | bropaex12 5760 | . . 3 ⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V)) |
3 | iscllaw 47120 | . . . 4 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
4 | ovrspc2v 7430 | . . . . 5 ⊢ (((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | |
5 | 4 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
6 | 3, 5 | syl6bi 253 | . . 3 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀))) |
7 | 2, 6 | mpcom 38 | . 2 ⊢ ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
8 | 7 | 3impib 1113 | 1 ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 class class class wbr 5141 (class class class)co 7404 clLaw ccllaw 47114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-iota 6488 df-fv 6544 df-ov 7407 df-cllaw 47117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |