Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clcllaw Structured version   Visualization version   GIF version

Theorem clcllaw 48183
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.)
Assertion
Ref Expression
clcllaw (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)

Proof of Theorem clcllaw
Dummy variables 𝑚 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cllaw 48178 . . . 4 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
21bropaex12 5733 . . 3 ( clLaw 𝑀 → ( ∈ V ∧ 𝑀 ∈ V))
3 iscllaw 48181 . . . 4 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
4 ovrspc2v 7416 . . . . 5 (((𝑋𝑀𝑌𝑀) ∧ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀) → (𝑋 𝑌) ∈ 𝑀)
54expcom 413 . . . 4 (∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
63, 5biimtrdi 253 . . 3 (( ∈ V ∧ 𝑀 ∈ V) → ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)))
72, 6mpcom 38 . 2 ( clLaw 𝑀 → ((𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀))
873impib 1116 1 (( clLaw 𝑀𝑋𝑀𝑌𝑀) → (𝑋 𝑌) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3045  Vcvv 3450   class class class wbr 5110  (class class class)co 7390   clLaw ccllaw 48175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-ov 7393  df-cllaw 48178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator