Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscllaw Structured version   Visualization version   GIF version

Theorem iscllaw 44389
Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
iscllaw (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem iscllaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 oveq 7146 . . . . . 6 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
32adantr 484 . . . . 5 ((𝑜 = 𝑚 = 𝑀) → (𝑥𝑜𝑦) = (𝑥 𝑦))
43, 1eleq12d 2908 . . . 4 ((𝑜 = 𝑚 = 𝑀) → ((𝑥𝑜𝑦) ∈ 𝑚 ↔ (𝑥 𝑦) ∈ 𝑀))
51, 4raleqbidv 3382 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
61, 5raleqbidv 3382 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
7 df-cllaw 44386 . 2 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
86, 7brabga 5398 1 (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130   class class class wbr 5042  (class class class)co 7140   clLaw ccllaw 44383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-iota 6293  df-fv 6342  df-ov 7143  df-cllaw 44386
This theorem is referenced by:  clcllaw  44391  mgmplusgiopALT  44394  clintopcllaw  44411  mgm2mgm  44427
  Copyright terms: Public domain W3C validator