Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscllaw | Structured version Visualization version GIF version |
Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
iscllaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | oveq 7274 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
4 | 3, 1 | eleq12d 2833 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → ((𝑥𝑜𝑦) ∈ 𝑚 ↔ (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
5 | 1, 4 | raleqbidv 3334 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
6 | 1, 5 | raleqbidv 3334 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
7 | df-cllaw 45336 | . 2 ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
8 | 6, 7 | brabga 5445 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 (class class class)co 7268 clLaw ccllaw 45333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-iota 6385 df-fv 6435 df-ov 7271 df-cllaw 45336 |
This theorem is referenced by: clcllaw 45341 mgmplusgiopALT 45344 clintopcllaw 45361 mgm2mgm 45377 |
Copyright terms: Public domain | W3C validator |