![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscllaw | Structured version Visualization version GIF version |
Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
iscllaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | oveq 7410 | . . . . . 6 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
4 | 3, 1 | eleq12d 2821 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → ((𝑥𝑜𝑦) ∈ 𝑚 ↔ (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
5 | 1, 4 | raleqbidv 3336 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
6 | 1, 5 | raleqbidv 3336 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
7 | df-cllaw 47117 | . 2 ⊢ clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
8 | 6, 7 | brabga 5527 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 class class class wbr 5141 (class class class)co 7404 clLaw ccllaw 47114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-iota 6488 df-fv 6544 df-ov 7407 df-cllaw 47117 |
This theorem is referenced by: clcllaw 47122 mgmplusgiopALT 47125 clintopcllaw 47142 mgm2mgm 47158 |
Copyright terms: Public domain | W3C validator |