Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscllaw Structured version   Visualization version   GIF version

Theorem iscllaw 43461
Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
iscllaw (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem iscllaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 oveq 6984 . . . . . 6 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
32adantr 473 . . . . 5 ((𝑜 = 𝑚 = 𝑀) → (𝑥𝑜𝑦) = (𝑥 𝑦))
43, 1eleq12d 2860 . . . 4 ((𝑜 = 𝑚 = 𝑀) → ((𝑥𝑜𝑦) ∈ 𝑚 ↔ (𝑥 𝑦) ∈ 𝑀))
51, 4raleqbidv 3341 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
61, 5raleqbidv 3341 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
7 df-cllaw 43458 . 2 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
86, 7brabga 5276 1 (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088   class class class wbr 4930  (class class class)co 6978   clLaw ccllaw 43455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-iota 6154  df-fv 6198  df-ov 6981  df-cllaw 43458
This theorem is referenced by:  clcllaw  43463  mgmplusgiopALT  43466  clintopcllaw  43483  mgm2mgm  43499
  Copyright terms: Public domain W3C validator