Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch1 Structured version   Visualization version   GIF version

Theorem cvlexch1 37342
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))

Proof of Theorem cvlexch1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvlexch.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvlexch.l . . . . . 6 = (le‘𝐾)
3 cvlexch.j . . . . . 6 = (join‘𝐾)
4 cvlexch.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 37337 . . . . 5 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
65simprbi 497 . . . 4 (𝐾 ∈ CvLat → ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)))
7 breq1 5077 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
87notbid 318 . . . . . . 7 (𝑝 = 𝑃 → (¬ 𝑝 𝑥 ↔ ¬ 𝑃 𝑥))
9 breq1 5077 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑞)))
108, 9anbi12d 631 . . . . . 6 (𝑝 = 𝑃 → ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑞))))
11 oveq2 7283 . . . . . . 7 (𝑝 = 𝑃 → (𝑥 𝑝) = (𝑥 𝑃))
1211breq2d 5086 . . . . . 6 (𝑝 = 𝑃 → (𝑞 (𝑥 𝑝) ↔ 𝑞 (𝑥 𝑃)))
1310, 12imbi12d 345 . . . . 5 (𝑝 = 𝑃 → (((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃))))
14 oveq2 7283 . . . . . . . 8 (𝑞 = 𝑄 → (𝑥 𝑞) = (𝑥 𝑄))
1514breq2d 5086 . . . . . . 7 (𝑞 = 𝑄 → (𝑃 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑄)))
1615anbi2d 629 . . . . . 6 (𝑞 = 𝑄 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑄))))
17 breq1 5077 . . . . . 6 (𝑞 = 𝑄 → (𝑞 (𝑥 𝑃) ↔ 𝑄 (𝑥 𝑃)))
1816, 17imbi12d 345 . . . . 5 (𝑞 = 𝑄 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃))))
19 breq2 5078 . . . . . . . 8 (𝑥 = 𝑋 → (𝑃 𝑥𝑃 𝑋))
2019notbid 318 . . . . . . 7 (𝑥 = 𝑋 → (¬ 𝑃 𝑥 ↔ ¬ 𝑃 𝑋))
21 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 𝑄) = (𝑋 𝑄))
2221breq2d 5086 . . . . . . 7 (𝑥 = 𝑋 → (𝑃 (𝑥 𝑄) ↔ 𝑃 (𝑋 𝑄)))
2320, 22anbi12d 631 . . . . . 6 (𝑥 = 𝑋 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) ↔ (¬ 𝑃 𝑋𝑃 (𝑋 𝑄))))
24 oveq1 7282 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑃) = (𝑋 𝑃))
2524breq2d 5086 . . . . . 6 (𝑥 = 𝑋 → (𝑄 (𝑥 𝑃) ↔ 𝑄 (𝑋 𝑃)))
2623, 25imbi12d 345 . . . . 5 (𝑥 = 𝑋 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
2713, 18, 26rspc3v 3573 . . . 4 ((𝑃𝐴𝑄𝐴𝑋𝐵) → (∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
286, 27mpan9 507 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃)))
2928exp4b 431 . 2 (𝐾 ∈ CvLat → ((𝑃𝐴𝑄𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))))
30293imp 1110 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  AtLatcal 37278  CvLatclc 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cvlat 37336
This theorem is referenced by:  cvlexch2  37343  cvlexchb1  37344  cvlexch3  37346  cvlcvr1  37353  hlexch1  37396
  Copyright terms: Public domain W3C validator