| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvlexch.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cvlexch.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | cvlexch.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | cvlexch.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 | 1, 2, 3, 4 | iscvlat 39325 | . . . . 5
⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧
∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | 
| 6 | 5 | simprbi 496 | . . . 4
⊢ (𝐾 ∈ CvLat →
∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝))) | 
| 7 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑝 = 𝑃 → (𝑝 ≤ 𝑥 ↔ 𝑃 ≤ 𝑥)) | 
| 8 | 7 | notbid 318 | . . . . . . 7
⊢ (𝑝 = 𝑃 → (¬ 𝑝 ≤ 𝑥 ↔ ¬ 𝑃 ≤ 𝑥)) | 
| 9 |  | breq1 5145 | . . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝 ≤ (𝑥 ∨ 𝑞) ↔ 𝑃 ≤ (𝑥 ∨ 𝑞))) | 
| 10 | 8, 9 | anbi12d 632 | . . . . . 6
⊢ (𝑝 = 𝑃 → ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) ↔ (¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑞)))) | 
| 11 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑥 ∨ 𝑝) = (𝑥 ∨ 𝑃)) | 
| 12 | 11 | breq2d 5154 | . . . . . 6
⊢ (𝑝 = 𝑃 → (𝑞 ≤ (𝑥 ∨ 𝑝) ↔ 𝑞 ≤ (𝑥 ∨ 𝑃))) | 
| 13 | 10, 12 | imbi12d 344 | . . . . 5
⊢ (𝑝 = 𝑃 → (((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑃)))) | 
| 14 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑞 = 𝑄 → (𝑥 ∨ 𝑞) = (𝑥 ∨ 𝑄)) | 
| 15 | 14 | breq2d 5154 | . . . . . . 7
⊢ (𝑞 = 𝑄 → (𝑃 ≤ (𝑥 ∨ 𝑞) ↔ 𝑃 ≤ (𝑥 ∨ 𝑄))) | 
| 16 | 15 | anbi2d 630 | . . . . . 6
⊢ (𝑞 = 𝑄 → ((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑞)) ↔ (¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑄)))) | 
| 17 |  | breq1 5145 | . . . . . 6
⊢ (𝑞 = 𝑄 → (𝑞 ≤ (𝑥 ∨ 𝑃) ↔ 𝑄 ≤ (𝑥 ∨ 𝑃))) | 
| 18 | 16, 17 | imbi12d 344 | . . . . 5
⊢ (𝑞 = 𝑄 → (((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑃)) ↔ ((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑄)) → 𝑄 ≤ (𝑥 ∨ 𝑃)))) | 
| 19 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑋)) | 
| 20 | 19 | notbid 318 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (¬ 𝑃 ≤ 𝑥 ↔ ¬ 𝑃 ≤ 𝑋)) | 
| 21 |  | oveq1 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 ∨ 𝑄) = (𝑋 ∨ 𝑄)) | 
| 22 | 21 | breq2d 5154 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑃 ≤ (𝑥 ∨ 𝑄) ↔ 𝑃 ≤ (𝑋 ∨ 𝑄))) | 
| 23 | 20, 22 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝑋 → ((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑄)) ↔ (¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)))) | 
| 24 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∨ 𝑃) = (𝑋 ∨ 𝑃)) | 
| 25 | 24 | breq2d 5154 | . . . . . 6
⊢ (𝑥 = 𝑋 → (𝑄 ≤ (𝑥 ∨ 𝑃) ↔ 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| 26 | 23, 25 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑋 → (((¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ (𝑥 ∨ 𝑄)) → 𝑄 ≤ (𝑥 ∨ 𝑃)) ↔ ((¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑄 ≤ (𝑋 ∨ 𝑃)))) | 
| 27 | 13, 18, 26 | rspc3v 3637 | . . . 4
⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) → ((¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑄 ≤ (𝑋 ∨ 𝑃)))) | 
| 28 | 6, 27 | mpan9 506 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| 29 | 28 | exp4b 430 | . 2
⊢ (𝐾 ∈ CvLat → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))))) | 
| 30 | 29 | 3imp 1110 | 1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |