Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch1 Structured version   Visualization version   GIF version

Theorem cvlexch1 37269
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))

Proof of Theorem cvlexch1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvlexch.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvlexch.l . . . . . 6 = (le‘𝐾)
3 cvlexch.j . . . . . 6 = (join‘𝐾)
4 cvlexch.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 37264 . . . . 5 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
65simprbi 496 . . . 4 (𝐾 ∈ CvLat → ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)))
7 breq1 5073 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
87notbid 317 . . . . . . 7 (𝑝 = 𝑃 → (¬ 𝑝 𝑥 ↔ ¬ 𝑃 𝑥))
9 breq1 5073 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑞)))
108, 9anbi12d 630 . . . . . 6 (𝑝 = 𝑃 → ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑞))))
11 oveq2 7263 . . . . . . 7 (𝑝 = 𝑃 → (𝑥 𝑝) = (𝑥 𝑃))
1211breq2d 5082 . . . . . 6 (𝑝 = 𝑃 → (𝑞 (𝑥 𝑝) ↔ 𝑞 (𝑥 𝑃)))
1310, 12imbi12d 344 . . . . 5 (𝑝 = 𝑃 → (((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃))))
14 oveq2 7263 . . . . . . . 8 (𝑞 = 𝑄 → (𝑥 𝑞) = (𝑥 𝑄))
1514breq2d 5082 . . . . . . 7 (𝑞 = 𝑄 → (𝑃 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑄)))
1615anbi2d 628 . . . . . 6 (𝑞 = 𝑄 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑄))))
17 breq1 5073 . . . . . 6 (𝑞 = 𝑄 → (𝑞 (𝑥 𝑃) ↔ 𝑄 (𝑥 𝑃)))
1816, 17imbi12d 344 . . . . 5 (𝑞 = 𝑄 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃))))
19 breq2 5074 . . . . . . . 8 (𝑥 = 𝑋 → (𝑃 𝑥𝑃 𝑋))
2019notbid 317 . . . . . . 7 (𝑥 = 𝑋 → (¬ 𝑃 𝑥 ↔ ¬ 𝑃 𝑋))
21 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 𝑄) = (𝑋 𝑄))
2221breq2d 5082 . . . . . . 7 (𝑥 = 𝑋 → (𝑃 (𝑥 𝑄) ↔ 𝑃 (𝑋 𝑄)))
2320, 22anbi12d 630 . . . . . 6 (𝑥 = 𝑋 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) ↔ (¬ 𝑃 𝑋𝑃 (𝑋 𝑄))))
24 oveq1 7262 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑃) = (𝑋 𝑃))
2524breq2d 5082 . . . . . 6 (𝑥 = 𝑋 → (𝑄 (𝑥 𝑃) ↔ 𝑄 (𝑋 𝑃)))
2623, 25imbi12d 344 . . . . 5 (𝑥 = 𝑋 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
2713, 18, 26rspc3v 3565 . . . 4 ((𝑃𝐴𝑄𝐴𝑋𝐵) → (∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
286, 27mpan9 506 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃)))
2928exp4b 430 . 2 (𝐾 ∈ CvLat → ((𝑃𝐴𝑄𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))))
30293imp 1109 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Atomscatm 37204  AtLatcal 37205  CvLatclc 37206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cvlat 37263
This theorem is referenced by:  cvlexch2  37270  cvlexchb1  37271  cvlexch3  37273  cvlcvr1  37280  hlexch1  37323
  Copyright terms: Public domain W3C validator