Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatl Structured version   Visualization version   GIF version

Theorem cvlatl 39303
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvlatl (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)

Proof of Theorem cvlatl
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 39301 . 2 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝))))
65simplbi 497 1 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  Atomscatm 39241  AtLatcal 39242  CvLatclc 39243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-cvlat 39300
This theorem is referenced by:  cvllat  39304  cvlexch3  39310  cvlexch4N  39311  cvlatexchb1  39312  cvlcvr1  39317  cvlcvrp  39318  cvlatcvr1  39319  cvlsupr2  39321  hlatl  39338
  Copyright terms: Public domain W3C validator