![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatl | Structured version Visualization version GIF version |
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatl | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2734 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2734 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2734 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | iscvlat 39304 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥 ∧ 𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝)))) |
6 | 5 | simplbi 497 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 Atomscatm 39244 AtLatcal 39245 CvLatclc 39246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-cvlat 39303 |
This theorem is referenced by: cvllat 39307 cvlexch3 39313 cvlexch4N 39314 cvlatexchb1 39315 cvlcvr1 39320 cvlcvrp 39321 cvlatcvr1 39322 cvlsupr2 39324 hlatl 39341 |
Copyright terms: Public domain | W3C validator |