Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatl Structured version   Visualization version   GIF version

Theorem cvlatl 37339
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvlatl (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)

Proof of Theorem cvlatl
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
4 eqid 2738 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 37337 . 2 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝))))
65simplbi 498 1 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  AtLatcal 37278  CvLatclc 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cvlat 37336
This theorem is referenced by:  cvllat  37340  cvlexch3  37346  cvlexch4N  37347  cvlatexchb1  37348  cvlcvr1  37353  cvlcvrp  37354  cvlatcvr1  37355  cvlsupr2  37357  hlatl  37374
  Copyright terms: Public domain W3C validator