| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatl | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlatl | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2733 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | iscvlat 39442 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥 ∧ 𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝)))) |
| 6 | 5 | simplbi 497 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 Atomscatm 39382 AtLatcal 39383 CvLatclc 39384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-cvlat 39441 |
| This theorem is referenced by: cvllat 39445 cvlexch3 39451 cvlexch4N 39452 cvlatexchb1 39453 cvlcvr1 39458 cvlcvrp 39459 cvlatcvr1 39460 cvlsupr2 39462 hlatl 39479 |
| Copyright terms: Public domain | W3C validator |