![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatl | Structured version Visualization version GIF version |
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatl | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | iscvlat 39279 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥 ∧ 𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝)))) |
6 | 5 | simplbi 497 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 Atomscatm 39219 AtLatcal 39220 CvLatclc 39221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cvlat 39278 |
This theorem is referenced by: cvllat 39282 cvlexch3 39288 cvlexch4N 39289 cvlatexchb1 39290 cvlcvr1 39295 cvlcvrp 39296 cvlatcvr1 39297 cvlsupr2 39299 hlatl 39316 |
Copyright terms: Public domain | W3C validator |