Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatl Structured version   Visualization version   GIF version

Theorem cvlatl 38195
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvlatl (๐พ โˆˆ CvLat โ†’ ๐พ โˆˆ AtLat)

Proof of Theorem cvlatl
Dummy variables ๐‘ž ๐‘ ๐‘ฅ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseโ€˜๐พ) = (Baseโ€˜๐พ)
2 eqid 2733 . . 3 (leโ€˜๐พ) = (leโ€˜๐พ)
3 eqid 2733 . . 3 (joinโ€˜๐พ) = (joinโ€˜๐พ)
4 eqid 2733 . . 3 (Atomsโ€˜๐พ) = (Atomsโ€˜๐พ)
51, 2, 3, 4iscvlat 38193 . 2 (๐พ โˆˆ CvLat โ†” (๐พ โˆˆ AtLat โˆง โˆ€๐‘ โˆˆ (Atomsโ€˜๐พ)โˆ€๐‘ž โˆˆ (Atomsโ€˜๐พ)โˆ€๐‘ฅ โˆˆ (Baseโ€˜๐พ)((ยฌ ๐‘(leโ€˜๐พ)๐‘ฅ โˆง ๐‘(leโ€˜๐พ)(๐‘ฅ(joinโ€˜๐พ)๐‘ž)) โ†’ ๐‘ž(leโ€˜๐พ)(๐‘ฅ(joinโ€˜๐พ)๐‘))))
65simplbi 499 1 (๐พ โˆˆ CvLat โ†’ ๐พ โˆˆ AtLat)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 397   โˆˆ wcel 2107  โˆ€wral 3062   class class class wbr 5149  โ€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  joincjn 18264  Atomscatm 38133  AtLatcal 38134  CvLatclc 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-cvlat 38192
This theorem is referenced by:  cvllat  38196  cvlexch3  38202  cvlexch4N  38203  cvlatexchb1  38204  cvlcvr1  38209  cvlcvrp  38210  cvlatcvr1  38211  cvlsupr2  38213  hlatl  38230
  Copyright terms: Public domain W3C validator