| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatl | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlatl | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | iscvlat 39361 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥 ∧ 𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝)))) |
| 6 | 5 | simplbi 497 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 lecple 17165 joincjn 18214 Atomscatm 39301 AtLatcal 39302 CvLatclc 39303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-cvlat 39360 |
| This theorem is referenced by: cvllat 39364 cvlexch3 39370 cvlexch4N 39371 cvlatexchb1 39372 cvlcvr1 39377 cvlcvrp 39378 cvlatcvr1 39379 cvlsupr2 39381 hlatl 39398 |
| Copyright terms: Public domain | W3C validator |