| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatl | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlatl | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2735 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2735 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | iscvlat 39341 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)∀𝑥 ∈ (Base‘𝐾)((¬ 𝑝(le‘𝐾)𝑥 ∧ 𝑝(le‘𝐾)(𝑥(join‘𝐾)𝑞)) → 𝑞(le‘𝐾)(𝑥(join‘𝐾)𝑝)))) |
| 6 | 5 | simplbi 497 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 Atomscatm 39281 AtLatcal 39282 CvLatclc 39283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-cvlat 39340 |
| This theorem is referenced by: cvllat 39344 cvlexch3 39350 cvlexch4N 39351 cvlatexchb1 39352 cvlcvr1 39357 cvlcvrp 39358 cvlatcvr1 39359 cvlsupr2 39361 hlatl 39378 |
| Copyright terms: Public domain | W3C validator |