Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscvlat2N | Structured version Visualization version GIF version |
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscvlat2.b | ⊢ 𝐵 = (Base‘𝐾) |
iscvlat2.l | ⊢ ≤ = (le‘𝐾) |
iscvlat2.j | ⊢ ∨ = (join‘𝐾) |
iscvlat2.m | ⊢ ∧ = (meet‘𝐾) |
iscvlat2.z | ⊢ 0 = (0.‘𝐾) |
iscvlat2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
iscvlat2N | ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscvlat2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | iscvlat2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | iscvlat2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | iscvlat2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | iscvlat 37590 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
6 | simpll 764 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
7 | simplrl 774 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) | |
8 | simpr 485 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
9 | iscvlat2.m | . . . . . . . . 9 ⊢ ∧ = (meet‘𝐾) | |
10 | iscvlat2.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
11 | 1, 2, 9, 10, 4 | atnle 37584 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
12 | 6, 7, 8, 11 | syl3anc 1370 | . . . . . . 7 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
13 | 12 | anbi1d 630 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) ↔ ((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)))) |
14 | 13 | imbi1d 341 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
15 | 14 | ralbidva 3168 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
16 | 15 | 2ralbidva 3206 | . . 3 ⊢ (𝐾 ∈ AtLat → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
17 | 16 | pm5.32i 575 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
18 | 5, 17 | bitri 274 | 1 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 lecple 17066 joincjn 18126 meetcmee 18127 0.cp0 18238 Atomscatm 37530 AtLatcal 37531 CvLatclc 37532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-lat 18247 df-covers 37533 df-ats 37534 df-atl 37565 df-cvlat 37589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |