Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat2N Structured version   Visualization version   GIF version

Theorem iscvlat2N 39280
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
iscvlat2.b 𝐵 = (Base‘𝐾)
iscvlat2.l = (le‘𝐾)
iscvlat2.j = (join‘𝐾)
iscvlat2.m = (meet‘𝐾)
iscvlat2.z 0 = (0.‘𝐾)
iscvlat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat2N (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝑥,𝐴   𝑥,𝐵   𝐾,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)   0 (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat2N
StepHypRef Expression
1 iscvlat2.b . . 3 𝐵 = (Base‘𝐾)
2 iscvlat2.l . . 3 = (le‘𝐾)
3 iscvlat2.j . . 3 = (join‘𝐾)
4 iscvlat2.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 39279 . 2 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
6 simpll 766 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝐾 ∈ AtLat)
7 simplrl 776 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝑝𝐴)
8 simpr 484 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → 𝑥𝐵)
9 iscvlat2.m . . . . . . . . 9 = (meet‘𝐾)
10 iscvlat2.z . . . . . . . . 9 0 = (0.‘𝐾)
111, 2, 9, 10, 4atnle 39273 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑝𝐴𝑥𝐵) → (¬ 𝑝 𝑥 ↔ (𝑝 𝑥) = 0 ))
126, 7, 8, 11syl3anc 1371 . . . . . . 7 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → (¬ 𝑝 𝑥 ↔ (𝑝 𝑥) = 0 ))
1312anbi1d 630 . . . . . 6 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) ↔ ((𝑝 𝑥) = 0𝑝 (𝑥 𝑞))))
1413imbi1d 341 . . . . 5 (((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑥𝐵) → (((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
1514ralbidva 3182 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑝𝐴𝑞𝐴)) → (∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ∀𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
16152ralbidva 3225 . . 3 (𝐾 ∈ AtLat → (∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
1716pm5.32i 574 . 2 ((𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
185, 17bitri 275 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 (((𝑝 𝑥) = 0𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Atomscatm 39219  AtLatcal 39220  CvLatclc 39221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator