![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscvlat2N | Structured version Visualization version GIF version |
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscvlat2.b | ⊢ 𝐵 = (Base‘𝐾) |
iscvlat2.l | ⊢ ≤ = (le‘𝐾) |
iscvlat2.j | ⊢ ∨ = (join‘𝐾) |
iscvlat2.m | ⊢ ∧ = (meet‘𝐾) |
iscvlat2.z | ⊢ 0 = (0.‘𝐾) |
iscvlat2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
iscvlat2N | ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscvlat2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | iscvlat2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | iscvlat2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | iscvlat2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | iscvlat 36003 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
6 | simpll 763 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
7 | simplrl 773 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) | |
8 | simpr 485 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
9 | iscvlat2.m | . . . . . . . . 9 ⊢ ∧ = (meet‘𝐾) | |
10 | iscvlat2.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
11 | 1, 2, 9, 10, 4 | atnle 35997 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
12 | 6, 7, 8, 11 | syl3anc 1364 | . . . . . . 7 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
13 | 12 | anbi1d 629 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) ↔ ((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)))) |
14 | 13 | imbi1d 343 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
15 | 14 | ralbidva 3162 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
16 | 15 | 2ralbidva 3164 | . . 3 ⊢ (𝐾 ∈ AtLat → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
17 | 16 | pm5.32i 575 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
18 | 5, 17 | bitri 276 | 1 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ∀wral 3104 class class class wbr 4964 ‘cfv 6228 (class class class)co 7019 Basecbs 16312 lecple 16401 joincjn 17383 meetcmee 17384 0.cp0 17476 Atomscatm 35943 AtLatcal 35944 CvLatclc 35945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-p0 17478 df-lat 17485 df-covers 35946 df-ats 35947 df-atl 35978 df-cvlat 36002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |