| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscvlat2N | Structured version Visualization version GIF version | ||
| Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iscvlat2.b | ⊢ 𝐵 = (Base‘𝐾) |
| iscvlat2.l | ⊢ ≤ = (le‘𝐾) |
| iscvlat2.j | ⊢ ∨ = (join‘𝐾) |
| iscvlat2.m | ⊢ ∧ = (meet‘𝐾) |
| iscvlat2.z | ⊢ 0 = (0.‘𝐾) |
| iscvlat2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| iscvlat2N | ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscvlat2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | iscvlat2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | iscvlat2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | iscvlat2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | iscvlat 39322 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| 6 | simpll 766 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
| 7 | simplrl 776 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) | |
| 8 | simpr 484 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 9 | iscvlat2.m | . . . . . . . . 9 ⊢ ∧ = (meet‘𝐾) | |
| 10 | iscvlat2.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
| 11 | 1, 2, 9, 10, 4 | atnle 39316 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
| 13 | 12 | anbi1d 631 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) ↔ ((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)))) |
| 14 | 13 | imbi1d 341 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| 15 | 14 | ralbidva 3150 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| 16 | 15 | 2ralbidva 3191 | . . 3 ⊢ (𝐾 ∈ AtLat → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| 18 | 5, 17 | bitri 275 | 1 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 0.cp0 18327 Atomscatm 39262 AtLatcal 39263 CvLatclc 39264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-covers 39265 df-ats 39266 df-atl 39297 df-cvlat 39321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |