![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscvlat2N | Structured version Visualization version GIF version |
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iscvlat2.b | ⊢ 𝐵 = (Base‘𝐾) |
iscvlat2.l | ⊢ ≤ = (le‘𝐾) |
iscvlat2.j | ⊢ ∨ = (join‘𝐾) |
iscvlat2.m | ⊢ ∧ = (meet‘𝐾) |
iscvlat2.z | ⊢ 0 = (0.‘𝐾) |
iscvlat2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
iscvlat2N | ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscvlat2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | iscvlat2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | iscvlat2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | iscvlat2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | iscvlat 39304 | . 2 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
6 | simpll 767 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
7 | simplrl 777 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) | |
8 | simpr 484 | . . . . . . . 8 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
9 | iscvlat2.m | . . . . . . . . 9 ⊢ ∧ = (meet‘𝐾) | |
10 | iscvlat2.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
11 | 1, 2, 9, 10, 4 | atnle 39298 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
12 | 6, 7, 8, 11 | syl3anc 1370 | . . . . . . 7 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑥 ↔ (𝑝 ∧ 𝑥) = 0 )) |
13 | 12 | anbi1d 631 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) ↔ ((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)))) |
14 | 13 | imbi1d 341 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐵) → (((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
15 | 14 | ralbidva 3173 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
16 | 15 | 2ralbidva 3216 | . . 3 ⊢ (𝐾 ∈ AtLat → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝))) ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
18 | 5, 17 | bitri 275 | 1 ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 meetcmee 18369 0.cp0 18480 Atomscatm 39244 AtLatcal 39245 CvLatclc 39246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-lat 18489 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |