MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfildlem Structured version   Visualization version   GIF version

Theorem isfildlem 23881
Description: Lemma for isfild 23882. (Contributed by Mario Carneiro, 1-Dec-2013.)
Hypotheses
Ref Expression
isfild.1 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
isfild.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
isfildlem (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem isfildlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3499 . . 3 (𝐵𝐹𝐵 ∈ V)
21a1i 11 . 2 (𝜑 → (𝐵𝐹𝐵 ∈ V))
3 isfild.2 . . . 4 (𝜑𝐴𝑉)
4 ssexg 5329 . . . . 5 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
54expcom 413 . . . 4 (𝐴𝑉 → (𝐵𝐴𝐵 ∈ V))
63, 5syl 17 . . 3 (𝜑 → (𝐵𝐴𝐵 ∈ V))
76adantrd 491 . 2 (𝜑 → ((𝐵𝐴[𝐵 / 𝑥]𝜓) → 𝐵 ∈ V))
8 eleq1 2827 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐹𝐵𝐹))
9 sseq1 4021 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
10 dfsbcq 3793 . . . . . . 7 (𝑦 = 𝐵 → ([𝑦 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
119, 10anbi12d 632 . . . . . 6 (𝑦 = 𝐵 → ((𝑦𝐴[𝑦 / 𝑥]𝜓) ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
128, 11bibi12d 345 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)) ↔ (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
1312imbi2d 340 . . . 4 (𝑦 = 𝐵 → ((𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))) ↔ (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))))
14 nfv 1912 . . . . . 6 𝑥𝜑
15 nfv 1912 . . . . . . 7 𝑥 𝑦𝐹
16 nfv 1912 . . . . . . . 8 𝑥 𝑦𝐴
17 nfsbc1v 3811 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜓
1816, 17nfan 1897 . . . . . . 7 𝑥(𝑦𝐴[𝑦 / 𝑥]𝜓)
1915, 18nfbi 1901 . . . . . 6 𝑥(𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))
2014, 19nfim 1894 . . . . 5 𝑥(𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
21 eleq1 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
22 sseq1 4021 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
23 sbceq1a 3802 . . . . . . . 8 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
2422, 23anbi12d 632 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐴𝜓) ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2521, 24bibi12d 345 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐹 ↔ (𝑥𝐴𝜓)) ↔ (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓))))
2625imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓))) ↔ (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))))
27 isfild.1 . . . . 5 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
2820, 26, 27chvarfv 2238 . . . 4 (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2913, 28vtoclg 3554 . . 3 (𝐵 ∈ V → (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
3029com12 32 . 2 (𝜑 → (𝐵 ∈ V → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓))))
312, 7, 30pm5.21ndd 379 1 (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  [wsbc 3791  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-sbc 3792  df-in 3970  df-ss 3980
This theorem is referenced by:  isfild  23882
  Copyright terms: Public domain W3C validator