MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfild Structured version   Visualization version   GIF version

Theorem isfild 22150
Description: Sufficient condition for a set of the form {𝑥 ∈ 𝒫 𝐴𝜑} to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Hypotheses
Ref Expression
isfild.1 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
isfild.2 (𝜑𝐴 ∈ V)
isfild.3 (𝜑[𝐴 / 𝑥]𝜓)
isfild.4 (𝜑 → ¬ [∅ / 𝑥]𝜓)
isfild.5 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓[𝑦 / 𝑥]𝜓))
isfild.6 ((𝜑𝑦𝐴𝑧𝐴) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
Assertion
Ref Expression
isfild (𝜑𝐹 ∈ (Fil‘𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴   𝑥,𝐹,𝑦   𝑦,𝑧,𝐹   𝜑,𝑥,𝑦   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)

Proof of Theorem isfild
StepHypRef Expression
1 isfild.1 . . . . 5 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
2 selpw 4460 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32biimpri 229 . . . . . 6 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
43adantr 481 . . . . 5 ((𝑥𝐴𝜓) → 𝑥 ∈ 𝒫 𝐴)
51, 4syl6bi 254 . . . 4 (𝜑 → (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
65ssrdv 3895 . . 3 (𝜑𝐹 ⊆ 𝒫 𝐴)
7 isfild.4 . . . 4 (𝜑 → ¬ [∅ / 𝑥]𝜓)
8 isfild.2 . . . . . 6 (𝜑𝐴 ∈ V)
91, 8isfildlem 22149 . . . . 5 (𝜑 → (∅ ∈ 𝐹 ↔ (∅ ⊆ 𝐴[∅ / 𝑥]𝜓)))
10 simpr 485 . . . . 5 ((∅ ⊆ 𝐴[∅ / 𝑥]𝜓) → [∅ / 𝑥]𝜓)
119, 10syl6bi 254 . . . 4 (𝜑 → (∅ ∈ 𝐹[∅ / 𝑥]𝜓))
127, 11mtod 199 . . 3 (𝜑 → ¬ ∅ ∈ 𝐹)
13 isfild.3 . . . . 5 (𝜑[𝐴 / 𝑥]𝜓)
14 ssid 3910 . . . . 5 𝐴𝐴
1513, 14jctil 520 . . . 4 (𝜑 → (𝐴𝐴[𝐴 / 𝑥]𝜓))
161, 8isfildlem 22149 . . . 4 (𝜑 → (𝐴𝐹 ↔ (𝐴𝐴[𝐴 / 𝑥]𝜓)))
1715, 16mpbird 258 . . 3 (𝜑𝐴𝐹)
186, 12, 173jca 1121 . 2 (𝜑 → (𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹𝐴𝐹))
19 elpwi 4463 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
20 isfild.5 . . . . . . . . . . 11 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓[𝑦 / 𝑥]𝜓))
21 simp2 1130 . . . . . . . . . . 11 ((𝜑𝑦𝐴𝑧𝑦) → 𝑦𝐴)
2220, 21jctild 526 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓 → (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2322adantld 491 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → ((𝑧𝐴[𝑧 / 𝑥]𝜓) → (𝑦𝐴[𝑦 / 𝑥]𝜓)))
241, 8isfildlem 22149 . . . . . . . . . 10 (𝜑 → (𝑧𝐹 ↔ (𝑧𝐴[𝑧 / 𝑥]𝜓)))
25243ad2ant1 1126 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → (𝑧𝐹 ↔ (𝑧𝐴[𝑧 / 𝑥]𝜓)))
261, 8isfildlem 22149 . . . . . . . . . 10 (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
27263ad2ant1 1126 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2823, 25, 273imtr4d 295 . . . . . . . 8 ((𝜑𝑦𝐴𝑧𝑦) → (𝑧𝐹𝑦𝐹))
29283expa 1111 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑧𝑦) → (𝑧𝐹𝑦𝐹))
3029impancom 452 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑧𝐹) → (𝑧𝑦𝑦𝐹))
3130rexlimdva 3247 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑧𝐹 𝑧𝑦𝑦𝐹))
3231ex 413 . . . 4 (𝜑 → (𝑦𝐴 → (∃𝑧𝐹 𝑧𝑦𝑦𝐹)))
3319, 32syl5 34 . . 3 (𝜑 → (𝑦 ∈ 𝒫 𝐴 → (∃𝑧𝐹 𝑧𝑦𝑦𝐹)))
3433ralrimiv 3148 . 2 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(∃𝑧𝐹 𝑧𝑦𝑦𝐹))
35 ssinss1 4134 . . . . . . 7 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
3635ad2antrr 722 . . . . . 6 (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → (𝑦𝑧) ⊆ 𝐴)
3736a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → (𝑦𝑧) ⊆ 𝐴))
38 an4 652 . . . . . 6 (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) ↔ ((𝑦𝐴𝑧𝐴) ∧ ([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)))
39 isfild.6 . . . . . . . 8 ((𝜑𝑦𝐴𝑧𝐴) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
40393expb 1113 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
4140expimpd 454 . . . . . 6 (𝜑 → (((𝑦𝐴𝑧𝐴) ∧ ([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)) → [(𝑦𝑧) / 𝑥]𝜓))
4238, 41syl5bi 243 . . . . 5 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → [(𝑦𝑧) / 𝑥]𝜓))
4337, 42jcad 513 . . . 4 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → ((𝑦𝑧) ⊆ 𝐴[(𝑦𝑧) / 𝑥]𝜓)))
4426, 24anbi12d 630 . . . 4 (𝜑 → ((𝑦𝐹𝑧𝐹) ↔ ((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓))))
451, 8isfildlem 22149 . . . 4 (𝜑 → ((𝑦𝑧) ∈ 𝐹 ↔ ((𝑦𝑧) ⊆ 𝐴[(𝑦𝑧) / 𝑥]𝜓)))
4643, 44, 453imtr4d 295 . . 3 (𝜑 → ((𝑦𝐹𝑧𝐹) → (𝑦𝑧) ∈ 𝐹))
4746ralrimivv 3157 . 2 (𝜑 → ∀𝑦𝐹𝑧𝐹 (𝑦𝑧) ∈ 𝐹)
48 isfil2 22148 . 2 (𝐹 ∈ (Fil‘𝐴) ↔ ((𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹𝐴𝐹) ∧ ∀𝑦 ∈ 𝒫 𝐴(∃𝑧𝐹 𝑧𝑦𝑦𝐹) ∧ ∀𝑦𝐹𝑧𝐹 (𝑦𝑧) ∈ 𝐹))
4918, 34, 47, 48syl3anbrc 1336 1 (𝜑𝐹 ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080  wcel 2081  wral 3105  wrex 3106  Vcvv 3437  [wsbc 3706  cin 3858  wss 3859  c0 4211  𝒫 cpw 4453  cfv 6225  Filcfil 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fv 6233  df-fbas 20224  df-fil 22138
This theorem is referenced by:  snfil  22156  fgcl  22170  filuni  22177  cfinfil  22185  csdfil  22186  supfil  22187  fin1aufil  22224
  Copyright terms: Public domain W3C validator