MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfil2 Structured version   Visualization version   GIF version

Theorem isfil2 22915
Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isfil2 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isfil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 filsspw 22910 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2 0nelfil 22908 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 filtop 22914 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
41, 2, 33jca 1126 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹))
5 elpwi 4539 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
6 filss 22912 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
763exp2 1352 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
87com23 86 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (𝑦𝐹 → (𝑦𝑥𝑥𝐹))))
98imp 406 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (𝑦𝐹 → (𝑦𝑥𝑥𝐹)))
109rexlimdv 3211 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
115, 10sylan2 592 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
1211ralrimiva 3107 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹))
13 filin 22913 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
14133expb 1118 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
1514ralrimivva 3114 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
164, 12, 153jca 1126 . 2 (𝐹 ∈ (Fil‘𝑋) → ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
17 simp11 1201 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
18 simp13 1203 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝑋𝐹)
1918ne0d 4266 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ≠ ∅)
20 simp12 1202 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ¬ ∅ ∈ 𝐹)
21 df-nel 3049 . . . . . 6 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
2220, 21sylibr 233 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∅ ∉ 𝐹)
23 ssid 3939 . . . . . . . . 9 (𝑥𝑦) ⊆ (𝑥𝑦)
24 sseq1 3942 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
2524rspcev 3552 . . . . . . . . 9 (((𝑥𝑦) ∈ 𝐹 ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2623, 25mpan2 687 . . . . . . . 8 ((𝑥𝑦) ∈ 𝐹 → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2726ralimi 3086 . . . . . . 7 (∀𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2827ralimi 3086 . . . . . 6 (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
29283ad2ant3 1133 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
3019, 22, 293jca 1126 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
31 isfbas2 22894 . . . . 5 (𝑋𝐹 → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3218, 31syl 17 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3317, 30, 32mpbir2and 709 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋))
34 n0 4277 . . . . . . . 8 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥))
35 elin 3899 . . . . . . . . . 10 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) ↔ (𝑦𝐹𝑦 ∈ 𝒫 𝑥))
36 elpwi 4539 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
3736anim2i 616 . . . . . . . . . 10 ((𝑦𝐹𝑦 ∈ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
3835, 37sylbi 216 . . . . . . . . 9 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
3938eximi 1838 . . . . . . . 8 (∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → ∃𝑦(𝑦𝐹𝑦𝑥))
4034, 39sylbi 216 . . . . . . 7 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦(𝑦𝐹𝑦𝑥))
41 df-rex 3069 . . . . . . 7 (∃𝑦𝐹 𝑦𝑥 ↔ ∃𝑦(𝑦𝐹𝑦𝑥))
4240, 41sylibr 233 . . . . . 6 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦𝐹 𝑦𝑥)
4342imim1i 63 . . . . 5 ((∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4443ralimi 3086 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
45443ad2ant2 1132 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
46 isfil 22906 . . 3 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
4733, 45, 46sylanbrc 582 . 2 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋))
4816, 47impbii 208 1 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wex 1783  wcel 2108  wne 2942  wnel 3048  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  cfv 6418  fBascfbas 20498  Filcfil 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-fbas 20507  df-fil 22905
This theorem is referenced by:  isfild  22917  infil  22922  neifil  22939  trfil2  22946
  Copyright terms: Public domain W3C validator