MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfil2 Structured version   Visualization version   GIF version

Theorem isfil2 23771
Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isfil2 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isfil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 filsspw 23766 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2 0nelfil 23764 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 filtop 23770 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
41, 2, 33jca 1128 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹))
5 elpwi 4554 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
6 filss 23768 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
763exp2 1355 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
87com23 86 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (𝑦𝐹 → (𝑦𝑥𝑥𝐹))))
98imp 406 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (𝑦𝐹 → (𝑦𝑥𝑥𝐹)))
109rexlimdv 3131 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
115, 10sylan2 593 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦𝐹 𝑦𝑥𝑥𝐹))
1211ralrimiva 3124 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹))
13 filin 23769 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
14133expb 1120 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
1514ralrimivva 3175 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
164, 12, 153jca 1128 . 2 (𝐹 ∈ (Fil‘𝑋) → ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
17 simp11 1204 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
18 simp13 1206 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝑋𝐹)
1918ne0d 4289 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ≠ ∅)
20 simp12 1205 . . . . . 6 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ¬ ∅ ∈ 𝐹)
21 df-nel 3033 . . . . . 6 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
2220, 21sylibr 234 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∅ ∉ 𝐹)
23 ssid 3952 . . . . . . . . 9 (𝑥𝑦) ⊆ (𝑥𝑦)
24 sseq1 3955 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
2524rspcev 3572 . . . . . . . . 9 (((𝑥𝑦) ∈ 𝐹 ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2623, 25mpan2 691 . . . . . . . 8 ((𝑥𝑦) ∈ 𝐹 → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2726ralimi 3069 . . . . . . 7 (∀𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
2827ralimi 3069 . . . . . 6 (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
29283ad2ant3 1135 . . . . 5 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
3019, 22, 293jca 1128 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
31 isfbas2 23750 . . . . 5 (𝑋𝐹 → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3218, 31syl 17 . . . 4 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
3317, 30, 32mpbir2and 713 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋))
34 n0 4300 . . . . . . . 8 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥))
35 elin 3913 . . . . . . . . . 10 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) ↔ (𝑦𝐹𝑦 ∈ 𝒫 𝑥))
36 elpwi 4554 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
3736anim2i 617 . . . . . . . . . 10 ((𝑦𝐹𝑦 ∈ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
3835, 37sylbi 217 . . . . . . . . 9 (𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → (𝑦𝐹𝑦𝑥))
3938eximi 1836 . . . . . . . 8 (∃𝑦 𝑦 ∈ (𝐹 ∩ 𝒫 𝑥) → ∃𝑦(𝑦𝐹𝑦𝑥))
4034, 39sylbi 217 . . . . . . 7 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦(𝑦𝐹𝑦𝑥))
41 df-rex 3057 . . . . . . 7 (∃𝑦𝐹 𝑦𝑥 ↔ ∃𝑦(𝑦𝐹𝑦𝑥))
4240, 41sylibr 234 . . . . . 6 ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → ∃𝑦𝐹 𝑦𝑥)
4342imim1i 63 . . . . 5 ((∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4443ralimi 3069 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
45443ad2ant2 1134 . . 3 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
46 isfil 23762 . . 3 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
4733, 45, 46sylanbrc 583 . 2 (((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋))
4816, 47impbii 209 1 (𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  cfv 6481  fBascfbas 21279  Filcfil 23760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-fbas 21288  df-fil 23761
This theorem is referenced by:  isfild  23773  infil  23778  neifil  23795  trfil2  23802
  Copyright terms: Public domain W3C validator