MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin32i Structured version   Visualization version   GIF version

Theorem isfin32i 10384
Description: One half of isfin3-2 10386. (Contributed by Mario Carneiro, 3-Jun-2015.)
Assertion
Ref Expression
isfin32i (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴)

Proof of Theorem isfin32i
StepHypRef Expression
1 isfin3 10315 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 10333 . . . 4 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 267 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 relwdom 9585 . . . . . 6 Rel ≼*
54brrelex1i 5715 . . . . 5 (ω ≼* 𝐴 → ω ∈ V)
6 canth2g 9150 . . . . 5 (ω ∈ V → ω ≺ 𝒫 ω)
7 sdomdom 8999 . . . . 5 (ω ≺ 𝒫 ω → ω ≼ 𝒫 ω)
85, 6, 73syl 18 . . . 4 (ω ≼* 𝐴 → ω ≼ 𝒫 ω)
9 wdompwdom 9597 . . . 4 (ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴)
10 domtr 9026 . . . 4 ((ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴) → ω ≼ 𝒫 𝐴)
118, 9, 10syl2anc 584 . . 3 (ω ≼* 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 140 . 2 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴)
131, 12sylbi 217 1 (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  ωcom 7866  cdom 8962  csdm 8963  * cwdom 9583  FinIVcfin4 10299  FinIIIcfin3 10300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-wdom 9584  df-fin4 10306  df-fin3 10307
This theorem is referenced by:  isf33lem  10385  isfin3-2  10386  fin33i  10388
  Copyright terms: Public domain W3C validator