![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin32i | Structured version Visualization version GIF version |
Description: One half of isfin3-2 9477. (Contributed by Mario Carneiro, 3-Jun-2015.) |
Ref | Expression |
---|---|
isfin32i | ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin3 9406 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) | |
2 | isfin4-2 9424 | . . . 4 ⊢ (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴)) | |
3 | 2 | ibi 259 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴) |
4 | relwdom 8713 | . . . . . 6 ⊢ Rel ≼* | |
5 | 4 | brrelex1i 5363 | . . . . 5 ⊢ (ω ≼* 𝐴 → ω ∈ V) |
6 | canth2g 8356 | . . . . 5 ⊢ (ω ∈ V → ω ≺ 𝒫 ω) | |
7 | sdomdom 8223 | . . . . 5 ⊢ (ω ≺ 𝒫 ω → ω ≼ 𝒫 ω) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (ω ≼* 𝐴 → ω ≼ 𝒫 ω) |
9 | wdompwdom 8725 | . . . 4 ⊢ (ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴) | |
10 | domtr 8248 | . . . 4 ⊢ ((ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴) → ω ≼ 𝒫 𝐴) | |
11 | 8, 9, 10 | syl2anc 580 | . . 3 ⊢ (ω ≼* 𝐴 → ω ≼ 𝒫 𝐴) |
12 | 3, 11 | nsyl 138 | . 2 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴) |
13 | 1, 12 | sylbi 209 | 1 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2157 Vcvv 3385 𝒫 cpw 4349 class class class wbr 4843 ωcom 7299 ≼ cdom 8193 ≺ csdm 8194 ≼* cwdom 8704 FinIVcfin4 9390 FinIIIcfin3 9391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-wdom 8706 df-fin4 9397 df-fin3 9398 |
This theorem is referenced by: isf33lem 9476 isfin3-2 9477 fin33i 9479 |
Copyright terms: Public domain | W3C validator |