MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin32i Structured version   Visualization version   GIF version

Theorem isfin32i 9776
Description: One half of isfin3-2 9778. (Contributed by Mario Carneiro, 3-Jun-2015.)
Assertion
Ref Expression
isfin32i (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴)

Proof of Theorem isfin32i
StepHypRef Expression
1 isfin3 9707 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 9725 . . . 4 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 268 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 relwdom 9019 . . . . . 6 Rel ≼*
54brrelex1i 5607 . . . . 5 (ω ≼* 𝐴 → ω ∈ V)
6 canth2g 8660 . . . . 5 (ω ∈ V → ω ≺ 𝒫 ω)
7 sdomdom 8526 . . . . 5 (ω ≺ 𝒫 ω → ω ≼ 𝒫 ω)
85, 6, 73syl 18 . . . 4 (ω ≼* 𝐴 → ω ≼ 𝒫 ω)
9 wdompwdom 9031 . . . 4 (ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴)
10 domtr 8551 . . . 4 ((ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴) → ω ≼ 𝒫 𝐴)
118, 9, 10syl2anc 584 . . 3 (ω ≼* 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 142 . 2 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴)
131, 12sylbi 218 1 (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  Vcvv 3500  𝒫 cpw 4542   class class class wbr 5063  ωcom 7568  cdom 8496  csdm 8497  * cwdom 9010  FinIVcfin4 9691  FinIIIcfin3 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-wdom 9012  df-fin4 9698  df-fin3 9699
This theorem is referenced by:  isf33lem  9777  isfin3-2  9778  fin33i  9780
  Copyright terms: Public domain W3C validator