![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin32i | Structured version Visualization version GIF version |
Description: One half of isfin3-2 10364. (Contributed by Mario Carneiro, 3-Jun-2015.) |
Ref | Expression |
---|---|
isfin32i | ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin3 10293 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) | |
2 | isfin4-2 10311 | . . . 4 ⊢ (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴)) | |
3 | 2 | ibi 266 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴) |
4 | relwdom 9563 | . . . . . 6 ⊢ Rel ≼* | |
5 | 4 | brrelex1i 5731 | . . . . 5 ⊢ (ω ≼* 𝐴 → ω ∈ V) |
6 | canth2g 9133 | . . . . 5 ⊢ (ω ∈ V → ω ≺ 𝒫 ω) | |
7 | sdomdom 8978 | . . . . 5 ⊢ (ω ≺ 𝒫 ω → ω ≼ 𝒫 ω) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (ω ≼* 𝐴 → ω ≼ 𝒫 ω) |
9 | wdompwdom 9575 | . . . 4 ⊢ (ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴) | |
10 | domtr 9005 | . . . 4 ⊢ ((ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴) → ω ≼ 𝒫 𝐴) | |
11 | 8, 9, 10 | syl2anc 582 | . . 3 ⊢ (ω ≼* 𝐴 → ω ≼ 𝒫 𝐴) |
12 | 3, 11 | nsyl 140 | . 2 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2104 Vcvv 3472 𝒫 cpw 4601 class class class wbr 5147 ωcom 7857 ≼ cdom 8939 ≺ csdm 8940 ≼* cwdom 9561 FinIVcfin4 10277 FinIIIcfin3 10278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-wdom 9562 df-fin4 10284 df-fin3 10285 |
This theorem is referenced by: isf33lem 10363 isfin3-2 10364 fin33i 10366 |
Copyright terms: Public domain | W3C validator |