MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin34 Structured version   Visualization version   GIF version

Theorem fin34 10077
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
fin34 (𝐴 ∈ FinIII𝐴 ∈ FinIV)

Proof of Theorem fin34
StepHypRef Expression
1 isfin3 9983 . . 3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 10001 . . . . 5 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 266 . . . 4 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 reldom 8697 . . . . . . . 8 Rel ≼
54brrelex2i 5635 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
6 canth2g 8867 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
75, 6syl 17 . . . . . 6 (ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴)
8 domsdomtr 8848 . . . . . 6 ((ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴) → ω ≺ 𝒫 𝐴)
97, 8mpdan 683 . . . . 5 (ω ≼ 𝐴 → ω ≺ 𝒫 𝐴)
10 sdomdom 8723 . . . . 5 (ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴)
119, 10syl 17 . . . 4 (ω ≼ 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 140 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴)
131, 12sylbi 216 . 2 (𝐴 ∈ FinIII → ¬ ω ≼ 𝐴)
14 isfin4-2 10001 . 2 (𝐴 ∈ FinIII → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
1513, 14mpbird 256 1 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070  ωcom 7687  cdom 8689  csdm 8690  FinIVcfin4 9967  FinIIIcfin3 9968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fin4 9974  df-fin3 9975
This theorem is referenced by:  finngch  10342  fin2so  35691
  Copyright terms: Public domain W3C validator