| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin34 | Structured version Visualization version GIF version | ||
| Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| fin34 | ⊢ (𝐴 ∈ FinIII → 𝐴 ∈ FinIV) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3 10249 | . . 3 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) | |
| 2 | isfin4-2 10267 | . . . . 5 ⊢ (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴)) | |
| 3 | 2 | ibi 267 | . . . 4 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴) |
| 4 | reldom 8924 | . . . . . . . 8 ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i 5695 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 6 | canth2g 9095 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≺ 𝒫 𝐴) |
| 8 | domsdomtr 9076 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴) → ω ≺ 𝒫 𝐴) | |
| 9 | 7, 8 | mpdan 687 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≺ 𝒫 𝐴) |
| 10 | sdomdom 8951 | . . . . 5 ⊢ (ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ω ≼ 𝒫 𝐴) |
| 12 | 3, 11 | nsyl 140 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴) |
| 13 | 1, 12 | sylbi 217 | . 2 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼ 𝐴) |
| 14 | isfin4-2 10267 | . 2 ⊢ (𝐴 ∈ FinIII → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴)) | |
| 15 | 13, 14 | mpbird 257 | 1 ⊢ (𝐴 ∈ FinIII → 𝐴 ∈ FinIV) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 ωcom 7842 ≼ cdom 8916 ≺ csdm 8917 FinIVcfin4 10233 FinIIIcfin3 10234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin4 10240 df-fin3 10241 |
| This theorem is referenced by: finngch 10608 fin2so 37601 |
| Copyright terms: Public domain | W3C validator |