MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin34 Structured version   Visualization version   GIF version

Theorem fin34 10428
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
fin34 (𝐴 ∈ FinIII𝐴 ∈ FinIV)

Proof of Theorem fin34
StepHypRef Expression
1 isfin3 10334 . . 3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 10352 . . . . 5 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 267 . . . 4 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 reldom 8990 . . . . . . . 8 Rel ≼
54brrelex2i 5746 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
6 canth2g 9170 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
75, 6syl 17 . . . . . 6 (ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴)
8 domsdomtr 9151 . . . . . 6 ((ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴) → ω ≺ 𝒫 𝐴)
97, 8mpdan 687 . . . . 5 (ω ≼ 𝐴 → ω ≺ 𝒫 𝐴)
10 sdomdom 9019 . . . . 5 (ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴)
119, 10syl 17 . . . 4 (ω ≼ 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 140 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴)
131, 12sylbi 217 . 2 (𝐴 ∈ FinIII → ¬ ω ≼ 𝐴)
14 isfin4-2 10352 . 2 (𝐴 ∈ FinIII → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
1513, 14mpbird 257 1 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148  ωcom 7887  cdom 8982  csdm 8983  FinIVcfin4 10318  FinIIIcfin3 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin4 10325  df-fin3 10326
This theorem is referenced by:  finngch  10693  fin2so  37594
  Copyright terms: Public domain W3C validator