MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin34 Structured version   Visualization version   GIF version

Theorem fin34 10281
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
fin34 (𝐴 ∈ FinIII𝐴 ∈ FinIV)

Proof of Theorem fin34
StepHypRef Expression
1 isfin3 10187 . . 3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 10205 . . . . 5 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 267 . . . 4 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 reldom 8875 . . . . . . . 8 Rel ≼
54brrelex2i 5671 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
6 canth2g 9044 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
75, 6syl 17 . . . . . 6 (ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴)
8 domsdomtr 9025 . . . . . 6 ((ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴) → ω ≺ 𝒫 𝐴)
97, 8mpdan 687 . . . . 5 (ω ≼ 𝐴 → ω ≺ 𝒫 𝐴)
10 sdomdom 8902 . . . . 5 (ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴)
119, 10syl 17 . . . 4 (ω ≼ 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 140 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴)
131, 12sylbi 217 . 2 (𝐴 ∈ FinIII → ¬ ω ≼ 𝐴)
14 isfin4-2 10205 . 2 (𝐴 ∈ FinIII → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
1513, 14mpbird 257 1 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  Vcvv 3436  𝒫 cpw 4547   class class class wbr 5089  ωcom 7796  cdom 8867  csdm 8868  FinIVcfin4 10171  FinIIIcfin3 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin4 10178  df-fin3 10179
This theorem is referenced by:  finngch  10546  fin2so  37655
  Copyright terms: Public domain W3C validator