MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin34 Structured version   Visualization version   GIF version

Theorem fin34 10382
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
fin34 (𝐴 ∈ FinIII𝐴 ∈ FinIV)

Proof of Theorem fin34
StepHypRef Expression
1 isfin3 10288 . . 3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
2 isfin4-2 10306 . . . . 5 (𝒫 𝐴 ∈ FinIV → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
32ibi 267 . . . 4 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴)
4 reldom 8942 . . . . . . . 8 Rel ≼
54brrelex2i 5724 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
6 canth2g 9128 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
75, 6syl 17 . . . . . 6 (ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴)
8 domsdomtr 9109 . . . . . 6 ((ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴) → ω ≺ 𝒫 𝐴)
97, 8mpdan 684 . . . . 5 (ω ≼ 𝐴 → ω ≺ 𝒫 𝐴)
10 sdomdom 8973 . . . . 5 (ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴)
119, 10syl 17 . . . 4 (ω ≼ 𝐴 → ω ≼ 𝒫 𝐴)
123, 11nsyl 140 . . 3 (𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴)
131, 12sylbi 216 . 2 (𝐴 ∈ FinIII → ¬ ω ≼ 𝐴)
14 isfin4-2 10306 . 2 (𝐴 ∈ FinIII → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
1513, 14mpbird 257 1 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  Vcvv 3466  𝒫 cpw 4595   class class class wbr 5139  ωcom 7849  cdom 8934  csdm 8935  FinIVcfin4 10272  FinIIIcfin3 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin4 10279  df-fin3 10280
This theorem is referenced by:  finngch  10647  fin2so  36979
  Copyright terms: Public domain W3C validator