MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd2 Structured version   Visualization version   GIF version

Theorem isgrpd2 18866
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2731, but we make an exception for theorems such as isgrpd2 18866, ismndd 18661, and islmodd 20797 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd2.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2 (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝑁(𝑥)   0 (𝑥)

Proof of Theorem isgrpd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isgrpd2.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd2.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd2.z . 2 (𝜑0 = (0g𝐺))
4 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
5 isgrpd2.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
6 isgrpd2.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
7 oveq1 7353 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
87eqeq1d 2733 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
98rspcev 3577 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
105, 6, 9syl2anc 584 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
111, 2, 3, 4, 10isgrpd2e 18865 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Mndcmnd 18639  Grpcgrp 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-grp 18846
This theorem is referenced by:  prdsgrpd  18960  oppggrp  19267
  Copyright terms: Public domain W3C validator