MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd2 Structured version   Visualization version   GIF version

Theorem isgrpd2 18996
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2740, but we make an exception for theorems such as isgrpd2 18996, ismndd 18794, and islmodd 20886 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd2.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2 (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝑁(𝑥)   0 (𝑥)

Proof of Theorem isgrpd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isgrpd2.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd2.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd2.z . 2 (𝜑0 = (0g𝐺))
4 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
5 isgrpd2.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
6 isgrpd2.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
7 oveq1 7455 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
87eqeq1d 2742 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
98rspcev 3635 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
105, 6, 9syl2anc 583 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
111, 2, 3, 4, 10isgrpd2e 18995 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-grp 18976
This theorem is referenced by:  prdsgrpd  19090  oppggrp  19400
  Copyright terms: Public domain W3C validator