| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpd2 | Structured version Visualization version GIF version | ||
| Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2733, but we make an exception for theorems such as isgrpd2 18871, ismndd 18666, and islmodd 20801 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
| Ref | Expression |
|---|---|
| isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| isgrpd2.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
| isgrpd2.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpd2 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 2 | isgrpd2.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 3 | isgrpd2.z | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
| 4 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 5 | isgrpd2.n | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | |
| 6 | isgrpd2.j | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | |
| 7 | oveq1 7359 | . . . . 5 ⊢ (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥)) | |
| 8 | 7 | eqeq1d 2735 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 )) |
| 9 | 8 | rspcev 3573 | . . 3 ⊢ ((𝑁 ∈ 𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 10 | 5, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 11 | 1, 2, 3, 4, 10 | isgrpd2e 18870 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Mndcmnd 18644 Grpcgrp 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-grp 18851 |
| This theorem is referenced by: prdsgrpd 18965 oppggrp 19271 |
| Copyright terms: Public domain | W3C validator |