![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpd2 | Structured version Visualization version GIF version |
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2733, but we make an exception for theorems such as isgrpd2 18775, ismndd 18583, and islmodd 20342 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
isgrpd2.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
isgrpd2.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpd2 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
2 | isgrpd2.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
3 | isgrpd2.z | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
4 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
5 | isgrpd2.n | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | |
6 | isgrpd2.j | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | |
7 | oveq1 7365 | . . . . 5 ⊢ (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥)) | |
8 | 7 | eqeq1d 2735 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 )) |
9 | 8 | rspcev 3580 | . . 3 ⊢ ((𝑁 ∈ 𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
10 | 5, 6, 9 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
11 | 1, 2, 3, 4, 10 | isgrpd2e 18774 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 0gc0g 17326 Mndcmnd 18561 Grpcgrp 18753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-iota 6449 df-fv 6505 df-ov 7361 df-grp 18756 |
This theorem is referenced by: prdsgrpd 18862 oppggrp 19143 |
Copyright terms: Public domain | W3C validator |