MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd2 Structured version   Visualization version   GIF version

Theorem isgrpd2 18895
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2730, but we make an exception for theorems such as isgrpd2 18895, ismndd 18690, and islmodd 20779 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd2.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2 (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝑁(𝑥)   0 (𝑥)

Proof of Theorem isgrpd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isgrpd2.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd2.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd2.z . 2 (𝜑0 = (0g𝐺))
4 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
5 isgrpd2.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
6 isgrpd2.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
7 oveq1 7397 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
87eqeq1d 2732 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
98rspcev 3591 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
105, 6, 9syl2anc 584 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
111, 2, 3, 4, 10isgrpd2e 18894 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668  Grpcgrp 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-grp 18875
This theorem is referenced by:  prdsgrpd  18989  oppggrp  19296
  Copyright terms: Public domain W3C validator