| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpd2 | Structured version Visualization version GIF version | ||
| Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2731, but we make an exception for theorems such as isgrpd2 18866, ismndd 18661, and islmodd 20797 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
| Ref | Expression |
|---|---|
| isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| isgrpd2.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
| isgrpd2.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpd2 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 2 | isgrpd2.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 3 | isgrpd2.z | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
| 4 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 5 | isgrpd2.n | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | |
| 6 | isgrpd2.j | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | |
| 7 | oveq1 7353 | . . . . 5 ⊢ (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥)) | |
| 8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 )) |
| 9 | 8 | rspcev 3577 | . . 3 ⊢ ((𝑁 ∈ 𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 10 | 5, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| 11 | 1, 2, 3, 4, 10 | isgrpd2e 18865 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Mndcmnd 18639 Grpcgrp 18843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-grp 18846 |
| This theorem is referenced by: prdsgrpd 18960 oppggrp 19267 |
| Copyright terms: Public domain | W3C validator |