![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isgrpd2 | Structured version Visualization version GIF version |
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2731, but we make an exception for theorems such as isgrpd2 18817, ismndd 18624, and islmodd 20426 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
isgrpd2.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
isgrpd2.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
Ref | Expression |
---|---|
isgrpd2 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
2 | isgrpd2.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
3 | isgrpd2.z | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
4 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
5 | isgrpd2.n | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | |
6 | isgrpd2.j | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | |
7 | oveq1 7400 | . . . . 5 ⊢ (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥)) | |
8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 )) |
9 | 8 | rspcev 3609 | . . 3 ⊢ ((𝑁 ∈ 𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
10 | 5, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
11 | 1, 2, 3, 4, 10 | isgrpd2e 18816 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 0gc0g 17367 Mndcmnd 18602 Grpcgrp 18794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-iota 6484 df-fv 6540 df-ov 7396 df-grp 18797 |
This theorem is referenced by: prdsgrpd 18907 oppggrp 19188 |
Copyright terms: Public domain | W3C validator |