MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgrpd Structured version   Visualization version   GIF version

Theorem prdsgrpd 18958
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsgrpd.y 𝑌 = (𝑆Xs𝑅)
prdsgrpd.i (𝜑𝐼𝑊)
prdsgrpd.s (𝜑𝑆𝑉)
prdsgrpd.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
prdsgrpd (𝜑𝑌 ∈ Grp)

Proof of Theorem prdsgrpd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2730 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdsgrpd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdsgrpd.i . . 3 (𝜑𝐼𝑊)
5 prdsgrpd.s . . 3 (𝜑𝑆𝑉)
6 prdsgrpd.r . . . 4 (𝜑𝑅:𝐼⟶Grp)
7 grpmnd 18848 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
87ssriv 3947 . . . 4 Grp ⊆ Mnd
9 fss 6686 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prds0g 18674 . 2 (𝜑 → (0g𝑅) = (0g𝑌))
123, 4, 5, 10prdsmndd 18673 . 2 (𝜑𝑌 ∈ Mnd)
13 eqid 2729 . . . 4 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2729 . . . 4 (+g𝑌) = (+g𝑌)
155elexd 3468 . . . . 5 (𝜑𝑆 ∈ V)
1615adantr 480 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
174elexd 3468 . . . . 5 (𝜑𝐼 ∈ V)
1817adantr 480 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
196adantr 480 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
20 simpr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
21 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
22 eqid 2729 . . . 4 (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) = (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
233, 13, 14, 16, 18, 19, 20, 21, 22prdsinvlem 18957 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) ∈ (Base‘𝑌) ∧ ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))(+g𝑌)𝑎) = (0g𝑅)))
2423simpld 494 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) ∈ (Base‘𝑌))
2523simprd 495 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))(+g𝑌)𝑎) = (0g𝑅))
261, 2, 11, 12, 24, 25isgrpd2 18864 1 (𝜑𝑌 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cmpt 5183  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Xscprds 17384  Mndcmnd 18637  Grpcgrp 18841  invgcminusg 18842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845
This theorem is referenced by:  prdsinvgd  18959  pwsgrp  18960  xpsgrp  18967  prdsabld  19768  prdsringd  20206  prdslmodd  20851  dsmmsubg  21628  prdstgpd  23988
  Copyright terms: Public domain W3C validator