Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsgrpd | Structured version Visualization version GIF version |
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsgrpd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsgrpd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsgrpd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsgrpd.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
Ref | Expression |
---|---|
prdsgrpd | ⊢ (𝜑 → 𝑌 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
2 | eqidd 2740 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
3 | prdsgrpd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
4 | prdsgrpd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsgrpd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
6 | prdsgrpd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
7 | grpmnd 18565 | . . . . 5 ⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) | |
8 | 7 | ssriv 3929 | . . . 4 ⊢ Grp ⊆ Mnd |
9 | fss 6613 | . . . 4 ⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
10 | 6, 8, 9 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
11 | 3, 4, 5, 10 | prds0g 18400 | . 2 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) |
12 | 3, 4, 5, 10 | prdsmndd 18399 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
13 | eqid 2739 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
14 | eqid 2739 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
15 | 5 | elexd 3450 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
17 | 4 | elexd 3450 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
19 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp) |
20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
21 | eqid 2739 | . . . 4 ⊢ (0g ∘ 𝑅) = (0g ∘ 𝑅) | |
22 | eqid 2739 | . . . 4 ⊢ (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) = (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) | |
23 | 3, 13, 14, 16, 18, 19, 20, 21, 22 | prdsinvlem 18665 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌) ∧ ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅))) |
24 | 23 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌)) |
25 | 23 | simprd 495 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅)) |
26 | 1, 2, 11, 12, 24, 25 | isgrpd2 18580 | 1 ⊢ (𝜑 → 𝑌 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ↦ cmpt 5161 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Xscprds 17137 Mndcmnd 18366 Grpcgrp 18558 invgcminusg 18559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-prds 17139 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 |
This theorem is referenced by: prdsinvgd 18667 pwsgrp 18668 xpsgrp 18675 prdsabld 19444 prdsringd 19832 prdslmodd 20212 dsmmsubg 20931 prdstgpd 23257 |
Copyright terms: Public domain | W3C validator |