Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsgrpd | Structured version Visualization version GIF version |
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsgrpd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsgrpd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsgrpd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsgrpd.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
Ref | Expression |
---|---|
prdsgrpd | ⊢ (𝜑 → 𝑌 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . 2 ⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) | |
2 | eqidd 2737 | . 2 ⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) | |
3 | prdsgrpd.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
4 | prdsgrpd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsgrpd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
6 | prdsgrpd.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
7 | grpmnd 18629 | . . . . 5 ⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) | |
8 | 7 | ssriv 3930 | . . . 4 ⊢ Grp ⊆ Mnd |
9 | fss 6647 | . . . 4 ⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
10 | 6, 8, 9 | sylancl 587 | . . 3 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
11 | 3, 4, 5, 10 | prds0g 18464 | . 2 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) |
12 | 3, 4, 5, 10 | prdsmndd 18463 | . 2 ⊢ (𝜑 → 𝑌 ∈ Mnd) |
13 | eqid 2736 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
14 | eqid 2736 | . . . 4 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
15 | 5 | elexd 3457 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
16 | 15 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ V) |
17 | 4 | elexd 3457 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
18 | 17 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V) |
19 | 6 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp) |
20 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌)) | |
21 | eqid 2736 | . . . 4 ⊢ (0g ∘ 𝑅) = (0g ∘ 𝑅) | |
22 | eqid 2736 | . . . 4 ⊢ (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) = (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) | |
23 | 3, 13, 14, 16, 18, 19, 20, 21, 22 | prdsinvlem 18729 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌) ∧ ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅))) |
24 | 23 | simpld 496 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → (𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) ∈ (Base‘𝑌)) |
25 | 23 | simprd 497 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌)) → ((𝑏 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)))(+g‘𝑌)𝑎) = (0g ∘ 𝑅)) |
26 | 1, 2, 11, 12, 24, 25 | isgrpd2 18644 | 1 ⊢ (𝜑 → 𝑌 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ↦ cmpt 5164 ∘ ccom 5604 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 0gc0g 17195 Xscprds 17201 Mndcmnd 18430 Grpcgrp 18622 invgcminusg 18623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-prds 17203 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 |
This theorem is referenced by: prdsinvgd 18731 pwsgrp 18732 xpsgrp 18739 prdsabld 19508 prdsringd 19896 prdslmodd 20276 dsmmsubg 20995 prdstgpd 23321 |
Copyright terms: Public domain | W3C validator |