MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgrpd Structured version   Visualization version   GIF version

Theorem prdsgrpd 18211
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsgrpd.y 𝑌 = (𝑆Xs𝑅)
prdsgrpd.i (𝜑𝐼𝑊)
prdsgrpd.s (𝜑𝑆𝑉)
prdsgrpd.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
prdsgrpd (𝜑𝑌 ∈ Grp)

Proof of Theorem prdsgrpd
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2825 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2825 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdsgrpd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdsgrpd.i . . 3 (𝜑𝐼𝑊)
5 prdsgrpd.s . . 3 (𝜑𝑆𝑉)
6 prdsgrpd.r . . . 4 (𝜑𝑅:𝐼⟶Grp)
7 grpmnd 18112 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
87ssriv 3957 . . . 4 Grp ⊆ Mnd
9 fss 6519 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
106, 8, 9sylancl 589 . . 3 (𝜑𝑅:𝐼⟶Mnd)
113, 4, 5, 10prds0g 17947 . 2 (𝜑 → (0g𝑅) = (0g𝑌))
123, 4, 5, 10prdsmndd 17946 . 2 (𝜑𝑌 ∈ Mnd)
13 eqid 2824 . . . 4 (Base‘𝑌) = (Base‘𝑌)
14 eqid 2824 . . . 4 (+g𝑌) = (+g𝑌)
155elexd 3500 . . . . 5 (𝜑𝑆 ∈ V)
1615adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ V)
174elexd 3500 . . . . 5 (𝜑𝐼 ∈ V)
1817adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
196adantr 484 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
20 simpr 488 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
21 eqid 2824 . . . 4 (0g𝑅) = (0g𝑅)
22 eqid 2824 . . . 4 (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) = (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
233, 13, 14, 16, 18, 19, 20, 21, 22prdsinvlem 18210 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) ∈ (Base‘𝑌) ∧ ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))(+g𝑌)𝑎) = (0g𝑅)))
2423simpld 498 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏))) ∈ (Base‘𝑌))
2523simprd 499 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((𝑏𝐼 ↦ ((invg‘(𝑅𝑏))‘(𝑎𝑏)))(+g𝑌)𝑎) = (0g𝑅))
261, 2, 11, 12, 24, 25isgrpd2 18125 1 (𝜑𝑌 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  wss 3919  cmpt 5133  ccom 5547  wf 6341  cfv 6345  (class class class)co 7151  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Xscprds 16721  Mndcmnd 17913  Grpcgrp 18105  invgcminusg 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12897  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-prds 16723  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109
This theorem is referenced by:  prdsinvgd  18212  pwsgrp  18213  xpsgrp  18220  prdsabld  18984  prdsringd  19367  prdslmodd  19743  dsmmsubg  20441  prdstgpd  22739
  Copyright terms: Public domain W3C validator