Step | Hyp | Ref
| Expression |
1 | | ismndd.c |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
2 | 1 | 3expb 1118 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
3 | | simpll 763 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝜑) |
4 | | simplrl 773 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
5 | | simplrr 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
6 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
7 | | ismndd.a |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
8 | 3, 4, 5, 6, 7 | syl13anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | 8 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 2, 9 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
11 | 10 | ralrimivva 3114 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
12 | | ismndd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
13 | | ismndd.p |
. . . . . . . 8
⊢ (𝜑 → + =
(+g‘𝐺)) |
14 | 13 | oveqd 7272 |
. . . . . . 7
⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
15 | 14, 12 | eleq12d 2833 |
. . . . . 6
⊢ (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
16 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → 𝑧 = 𝑧) |
17 | 13, 14, 16 | oveq123d 7276 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧)) |
18 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → 𝑥 = 𝑥) |
19 | 13 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 + 𝑧) = (𝑦(+g‘𝐺)𝑧)) |
20 | 13, 18, 19 | oveq123d 7276 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
21 | 17, 20 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
22 | 12, 21 | raleqbidv 3327 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
23 | 15, 22 | anbi12d 630 |
. . . . 5
⊢ (𝜑 → (((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))))) |
24 | 12, 23 | raleqbidv 3327 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))))) |
25 | 12, 24 | raleqbidv 3327 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))))) |
26 | 11, 25 | mpbid 231 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
27 | | ismndd.z |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐵) |
28 | 27, 12 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
29 | 12 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
30 | 29 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
31 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + =
(+g‘𝐺)) |
32 | 31 | oveqd 7272 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
33 | | ismndd.i |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
34 | 32, 33 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
35 | 31 | oveqd 7272 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
36 | | ismndd.j |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
37 | 35, 36 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
38 | 34, 37 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 (+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺) 0 ) = 𝑥)) |
39 | 30, 38 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺) 0 ) = 𝑥)) |
40 | 39 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺) 0 ) = 𝑥)) |
41 | | oveq1 7262 |
. . . . . 6
⊢ (𝑢 = 0 → (𝑢(+g‘𝐺)𝑥) = ( 0 (+g‘𝐺)𝑥)) |
42 | 41 | eqeq1d 2740 |
. . . . 5
⊢ (𝑢 = 0 → ((𝑢(+g‘𝐺)𝑥) = 𝑥 ↔ ( 0 (+g‘𝐺)𝑥) = 𝑥)) |
43 | 42 | ovanraleqv 7279 |
. . . 4
⊢ (𝑢 = 0 → (∀𝑥 ∈ (Base‘𝐺)((𝑢(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺) 0 ) = 𝑥))) |
44 | 43 | rspcev 3552 |
. . 3
⊢ (( 0 ∈
(Base‘𝐺) ∧
∀𝑥 ∈
(Base‘𝐺)(( 0
(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺) 0 ) = 𝑥)) → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑢) = 𝑥)) |
45 | 28, 40, 44 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑢) = 𝑥)) |
46 | | eqid 2738 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
47 | | eqid 2738 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
48 | 46, 47 | ismnd 18303 |
. 2
⊢ (𝐺 ∈ Mnd ↔
(∀𝑥 ∈
(Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) ∧ ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑢) = 𝑥))) |
49 | 26, 45, 48 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐺 ∈ Mnd) |